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PREFACE

The idea to study recurrences took root in 1949 during an informal lecture
of P. Montel. A discussion about possible types of fixed points in 1959 led to a
lasting collaboration with C. Mira. The analytical insight increased more rapidly
after an invariant curve germ, based on a Lattés series, was successfullx/cﬁntinued
by means of numerical computations. The material described in this monograph consti-
tutes a synopsis of the slowly accumulated particular results. Frequent discussions
with R. Thibault, R. Clerc, Ch. Hartmann, J. Couot, C. Gillot, O, Rossler and

G. Targonski produced substantial improvments.

During the last few years recurrences appeared in several fields of applied
science and they have become a major research topic of the interdisciplinary Dynamic
Systems Research Group of Toulouse University. The creation of such a group would
have been impossible without the continued support of J.C. Martin, President of

Toulouse University.
The text was typed by Mrs. C. Grima and many of the figures were drawn by

G. Roussel. The preparation of the typescript was encouraged by Ph. Leturcq. All

contributions are gratefully acknowledged.

Toulouse, March 1980. I.G.
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INTRODUCTION AND STATEMENT OF THE PROBLEM

The content of this monograph is intended to be easily accessible to readers
from various disciplines, such as mathematies, physics, biology, biometry, medical
biometry, ecology, etc., who face time-evolving phenomena, or as the latter are conci-
sely called : dynamic systems. For this reason, the simplest possible terminology has
been adopted, in order not to add artificial vocabulary~hurdles to the intrinsic
difficulty of the subject. Ars-pro-artis generalisations, so popular in contemporary
mathematics, have been deliberately sacrified in order not to obscure the dominating
internal mechanisms of the evolution processes and thus preserve a phenomenological
transparency. The emphasis on "what happens" instead of on symbols appears to be a
valid motivation of all efforts to understand nature (as well as mathematics). The
resulting formulation of problems may therefore appear primitive, sometimes even
simplistic, and the terminology old-fashioned. Abstractly inclined readers will no
doubt find occasions to feel irritated ; the authors accept in advance full blame for
these distractions from the subject-matter in question. Experience in dynamic systems
teaches, however, that apparently simple problems turn out to have complicated solu-
tions, whose description happens to encroach on the "influence spheres" of several
distinct mathematical disciplines, each having already a frozen professional vocabu~
lary. One way out of this linguistic predicament appears to be the pursuit of maximal
simplicity, and thus the search for a maximal interdisciplinary common part ; which is
the exposition method adopted by the authors. The monograph is restricted to the study
of discrete dynamic dystems, taken from a “natural” context, expressed in the form of
one or two-dimensional real-valued point-mappings, or according to old French usage,

recurrences,

Recurrences occur in many branches of mathematics, ranging from number theory
to functional equations (c.f. [Mto]). They appear also independently as natural des—
criptions of evolution phenomena in physics, biology, etc. (c.f. [M 2]). Individual
results on recurrences are therefore scattered in different types of publications,
and are generally expressed in a widely varying vocalubary. The purpose of this
monograph is to provide a systematic and unified treatment of presently known and
physically, biologically, etc. relevant properties of first and second order real-
valued recurrences. Several new results are published here for the first time. For
conciseness, all constants, parameters, variables and functions are assumed to be

real-valued, unless the contrary is explicitly stated.

The conventional specialized symbols used to express this property will be
omitted. Functional spaces will be treated in the same manner ; in most cases only
a verbal specification will be given. Readers in need of constantly repeated speciali-

zed symbols will experience no difficulty in supplying their owm.



Autonomous first order recurrences of the form

(0-1) X = f(xn, c), n=20, £, 2, ...

where c is a parameter and f(x, c) a single-valued smooth function of both x and c,
constitute one of the oldest mathematical notions (examples : relation between two
successive numbers of a sequence ; Hurwitz's definition of the logarithm in terms of

the limit of X, 0> when x = Vxn, X, > 0). A rather fundamental role is played

+ 1
by recurrences in the works 0? Poincaré, although at first sight it appears that they
are introduced there merely as an artifice for the study of trajectories of dynamic
systems, defined by a system of ordinary differential equations, where the independent
variable represents time. The advantage obtained by means of this artifice consists
in the reduction of the dimensionality of the problem by one unit, which is accompli-
shed by the elimination of one dependent variable via a suitable "surface of section".
As an illustration of the procedure comnsider a particular example [A 5] possessing

explicit expressions in terms of elementary functions at every stage (this is comple-

tely untypical in a non linear context).

Let the dynamic system be of order two :

.

(0-2) X+ 2bk+x=0,%x<0;=a,x=0;=1,%x>03;¢t30 .

where 0 < b« 1, 0 <a <1, and x = x(t), X(t) = y(t) are continuous functions. It is
required to determine the nature of the solutions of (0-2) in the phase plane x, y ;
and in particular to ascertain the possible existence of periodic solutions, which
to quote Poincaré, constitute the main breach in the natural defences (i.e. in the

intrinsic complexity) of non linear dynamic systems.

Since the dynamic system (0-2) is linear for y < 0 and y > 0, the correspon—
ding component—solutions are

y < 0: x_(t) e_bt(ﬁ cos wt + Z sin wt), Z = l(§ + bx),
t - w
(0-2") 2 9
y > 0O: x+(t) =1+ x (t), w =1-=->b",

where X, ¥ is either x_(0), y_(0) or x+(0), y+(0). The assumed continuity of x(t) and
%(t) implies that all phase-plane trajectories G(x, y) = const. of (0-2), defined
parametrically by (0-2'), are continuous, cross the x-axis, and are not tangent to
the latter. Thus the x-axis, or a part of it, is an appropriate (one-dimensional)
surface of section. Fix the imnitial point (X, ¥), V¥ # 0, and let 0 < X # a be the
first x-axis crossing point of a trajectory of (0-2) passing through (%, ¥). It

follows from (0-2') that the next positive x-axis crossing occurs at

X =1+ e ¢ 4+ X e_zc, ¢ = nmb/w ,
and, in general, two successive positive x-axis crossing points of G(x, y) = const.
are related by the linear recurrence
(0-3) X =1+e %+ x e-zc, X >0, n=0,1, 2,

n+1 n n



By conmstruction, the first order recurrence (0-3) contains the same amount of
information about the functiom G(x, y) as the second order differential equation
(0-2). If (0-3) is to be useful, however, it is necessary to know how to find its
relevant solution. Because of the simplicity of both (0-2) and (0-3), this solution
can be found by trial and error :

~2cn -c

(0-4) X =% e -2y -9

without any need of a preliminary abstract analysis characterizing its nature, and
the functional space in which it is located. A known explicit solution is, of course,
more informative than an abstract theorem affirming its existence, uniqueness and
continuity, but unfortunately in the general context of non linear recurrences such
a favourable situatiom occurs only exceptionally. From an examination of xn in (0-4)
as a function of n, it is easily seen that the dynamic system (0-2) adwits a unique
periodic solution, whose closed phase plane trajectory G_ crosses the x-axis at
. -c
(0=5) x =limx =1/(1 - e
o n
n-><
The uniqueness of G results from the fact that x is independent of X - All

) .

other trajectories G are spirals which approach G_ asymptotically. The periodic solu-
tion is therefore asymptotically stable (in the sense of Liapunov) and its influence
domain is the whole phase plane x, y, i.e. it is reached from arbitrary X, y. The
point (x0 # a, 0), excluded in the determination of (0-3), is an unstable constant

solution of (0-2).

It is known that in certain cases (example : problem of the climate, [L 3]),
the trajectory structure of a differential equation is described by a recurrence whose
order is two units lower. The reduction of dimensionality by one or more units is
obviously not a general property of an intrinsic structural equivalence between a
differential equation and a recurrence. Consider in fact the first order autonomous

differential equation
(0-6) x = g(x, ¢), x = x(t), t > 0, x(0) = X

where X, C are parameters and g is a single-valued continuously differentiable func-

tion of its arguments. Let
(-7 x(t) = Hxg, t, )

be the general solution of (0-6). Replacing x(t) by the finite difference
(x(t+h) — x(t)) / h, h > 0 and letting t, = nh, x = x(tn), equation (0-6) turms into

the recurrence

(0-8) X =x + hg(xn, c)

n+1l
which is of the same order as the differential equation (0-6). For h <« 1 the solution
structure of (0-6) and (0-8) is known to be equivalent (Euler's method of discretiza-

tion, but this equivalence does not persist for larger h, [G 9], p. 46).



The two examples (0-2), (0-3) and (0-6), (0-8), raise the following question :
how is it possible to decide whether for a specific f the recurrence (0-1) is struc-
turally equivalent to a differential equation of order one, two or higher ? A meaning-
ful answer to this question is impossible unless the notions "solution of a recurrence"
and "structural equivalence'", used above in a rather self-evident fashion, have been
given unambiguous definitions. The detailed nature of these definitions appears to
have far-reaching consequences with respect to what constitutes a characteristic pro-
perty of a recurrence, because such a characterization is to be consistent with the
properties of associated differential equations, regardless of a possible difference
of order. Moreover, since there exists a very strong link (ec.f. [K 6]) between the

recurrence (0-1), the functional iterates

(0-9) fnﬂ(x, c) = £(f (x, o)), fl(x, e) = f(x, ¢), fo(x, c) = x,

n=20,1, 2, ... and some functional equations, like for example

w(f(x, ¢)) = s w(x) (Schrdder)

w(f(x, ¢)) = w(x) (automorphic functions)
(0-10) w(E(x, ©)) = (W) (Bbttcher)

w(f(x, ¢) = w(x) + a (Abel)

Z u, w(vi) = w(x) (Perron~Frobenius, special

t case)

where m, s, a, are parameters, u, = ui(f(x, c)), v, = vi(f(x, ¢) known functions of
f, and f is the same as in (0-1), any characteristic property of a recurrence sheds
considerable light on the properties of iterations and functional equations. It should
be stressed at this point that x is a discrete dependent variable in (0-1), whereas

in (0-9), (0~10), it is usually a continuous independent one.

Due to the assumed discreteness of x, the recurrence (0-1) is not equivalent
to a nominally identical difference equation. In a difference equation x 1is assumed
to be a continuous variable. This apparently minor distinction has major consequences.
For example, when (0-1) is considered as a recurrence, a completely and unambiguously
defined initial data (i.e. Cauchy) problem is formulated for n > O by specifying an
isolated initial value X of x, whereas when (0-1) is considered as a difference
equation, it is necessary to specify x on a continuum of values (for example, on the
interval X, <x< x]). In the first case the solution is a sequence of real numbers
{xn}, n=20,1, 2, ..., and in the second a rather complicated mathematical entity
(a functional of the initial function). In the case of a linear recurrence (with
respect to xn), this theoretically fundamental distinction dissolves into practical
insignificance (see for example eq. (0-3) and (0-4)), but for non linear f no deeper

analysis of (0-1) is possible without it.

Even a cursory examination of the literature on non linear recurrences shows
that their properties are extremely complex. The simplest possible '"generic" example

of (0-1)



(0-11) x =x_ +c, -2 g ¢ g %- s

has been studied intensely during at least two decades [M H]—[M 1ﬂ , but its basic
solution structure has been identified only recently. This recurrence, examined in
detail in Chapter 1, constitutes therefore a yardstick with which to measure the

efficiency of arguments and the amount of progress made on other first order recur-

rences.

Keeping in mind the fact that recurrences appear fundamentally as natural
descriptions of observed evolution phenomena, because most measurements of time-—
evolving variables (except for short—period continuous '"analog"-recordings) are dis-
crete, and only incidentally via differential or functional equations (which from a
fundamental physical point of view are more far—fetched abstractions), it is possible
to refer to them as dynamic systems in their own right. Whenever a distinction is
required between a dynamic system expressed in terms of differential equations and
one in terms of recurrences, the former will be called continuous and the latter dis-
crete. In these designations the adjectives continuous and discrete refer only to the
independent variables t and n, respectively. The dynamic system point of view presents
the advantage of giving access to an efficient and widely known terminology, which
should be able to cover at least in part the variety of situations expected to arise
in recurrences. In fact, there exists a hard-core part of dynamic system terminology,
which possesses a physically transparent phenomenological meaning, and which has
withstood the wear of prolonged theoretical as well as experimental usage. All efforts

will be made to stick to this "naturally selected" part.

The complex nature of non linear dynamic processes requires some comments on
what is to be understood by the notion "relevant solution”™ of a recurrence. A formal,
or perhaps better a formalistic definition is easy enough. Similarly to a continuous
dynamic system, the recurrence (0-1) is considered as an implicit definition of a

function
(0-12) x, = F(x, n, ©),

which leads to an identity in n, c, and X after insertion into (0-1). While n takes
only integer values, the parameters X s € are essentially continuous. Since X plays
in F and H, eq. (0-7), an analoguous role, it is natural to define (0-12) as the
general solution of (0-1). The definition (0-12) is theoretically quite satisfactory,
but "operationally” (i.e. practically) it is almost useless, because in general the
function F is unknown. The physical, biological, ete. information content of (0-12)
is therefore very low. In fact, since the function F is known to be in general extre-
mely complicated (in all non-contrived cases it cannot be expressed explicitly in
terms of known elementary and transcendental functions), it is illusory to study F by
means of, say, series expansions, integral representations, etc. Such particular ex-

pressions of F possess at most a local significance and cannot be used to test whether



all globally relevant properties of (0-1) have heen obtained or not.

Passing to an opposite extreme, motivated by the existence of numerical compu-
tation facilities, the expression (0-12) can be thought of as being merely a shorthand
notation for a set of qualitatively different (real number) sequences (xn}, n=0, *i,
*2, ..., generated by a suitable chosen set of initial values X . This definition is
fully operational for n > 0, because having fixed the set of %, the sequences {xn},

n > 0, called for brevity sequences of consequents of the x , are unambiguously
defined and can be straightforwardly computed for any fixed X and ¢, The definition
of (0-12) in terms of the {xn} is therefore widely used. A“graphical’ display in phase
space of the points {xn}, n=0,1, 2, ... is called a discrete half-trajectory of
(0-1), and whenever it is permissible to omit the qualificationn =0, 1, 2, ...,
simply a trajectory of (0-1). The numerical and graphical knowledge of a finite number
of discrete half-trajectories of (0-1) has obviously a very low theoretical informa-
tion content. In fact, there is no simple way of knowing whether a given finite, or
even enumerable set of {xn}, n=20,1, 2, ... is qualitatively exhaustive, i.e.
whether it contains a sufficient number of relevant "samples" permitting to establish
all characteristic properties of the function F in (0-12). The doubt about qualitative
exhaustivity is reinforced by the observation that the "complementary" discrete half-
trajectories {xn}, n=0, -1, -2, ..., called for brevity sequences of antecedents of

X , are Tarely, if ever examined. The reason for the practical avoidance of the {xn},

o°
n < 0 lies in the operational difficulty of inverting (0-1), i.e. in finding the X
corresponding to a known X . It is obvious that simple single-valued smooth functions
f(xn, ¢) may have complicated multi-valued and not necessarily smooth inverse func-
tions f_](xn, c). The computational determination of antecedents requires thus the use
of (real-valued) root—finding algorithms. As a rule, the non—uniqueness of f_]
triggers a complex branching process, whose existence undermines seriously the presu-

med practical usefullness of the operational definition of (0-12).

A third definition of the solution of (0~1), complementary to the analytical
one, is essentially indirect. It is based on the notion of a set of singularities of
the function F in (0-12). Both F and its singularities are assumed to be defined impli~
citly by the function £ in (0-1). Following an idea introduced by Poincaré in connec-
tion with continuous dynamic systems, a meaningful characterization of F consists in
the identification of its singularities, and in the description of the behaviour of
the latter as X and c vary. As in the case of continuous dynamic systems, any change
of the singularities, or of their properties, is called a bifurcation. The function
F in (0~12) is said to be known, i.e. fully characterized, when all its singularities,
and all bifurcations of the latter in the admissible range of x_ and ¢, have been
described. This characterization of ¥ is similar to that of a meroporphic function by

means of poles and zeros in the complex plane.

The indirect definition is used extensively in this monograph, the implicitly

defined singularity structure serving as a conceptual skeletton to which all properties



of a recurrence are related. Such an ordering of otherwise isolated particular pro-
perties (microscopic, macroscopic or collective ones) discloses many of the intrimsic
interrelationships of the latter. Once the decision has been taken to use the singu-
larity structure as a key tool, the remaining basic problem consists in discovering
what constitutes a relevant, and possibly a complete set of singularities of F. For
firts order recurrences with continuous and at least piecewise differentiable f, a
substantial set of fundamental, i.e. building bleck-like, singularities is already
known (c.f. chapter I). The problem of completeness is still open, because the

number of all possible qualitatively distinct singularities has not yet been determi-
ned. Accumulations of "elementary" singularities occur frequently, giving rise to
composite singularities ; the number of the latter is not necessarily finite, which
gives rise to new accumulations and thus to "higher—order'" composite singularities,
etc. Some singularities are due to the form of f in (0-1), i.e. they exist even if f
is a polynomial in X s others are due to the limited smoothness of f, i.e. they
exist only when £ lacks a sufficient number of continuous derivatives, but is other-
wise arbitrarily close to a polynomial (in the sense of some norm consistent with

the limited smoothness). In the case of a specific recurrence, i.e. with a given f

in (0-1), the singularities of F in (0-12) can only be determined one by one, or at
most set by set, and then ordered into sequences of similar elements. If these sequen-
ces converge (generally non uniformly), their limits may constitute additional quali-
tatively distinct singularities. In order to avoid unnecessarily awkward sentences in
what follows, it is understood that whenever some parameters or functions are mentio-
ned, they belong to their respective admissible spaces. All instances to the contrary

are explicitly mentioned.

Similarly to the case of continuous dynamic systems, a value or a set of

values of X, is called a singularity of the recurrence (Q-1), if and only if, for

this value or set the function ¥ in (0-12) describes a stationary state, or 2 cqonsti-
tutuent part of the latter. A stationary state is a dynamic system-term for an
invariant manifold of (0-1), which in some sense, to be specified in each case, is
independent of n. A necessary, but not always a sufficient condition for an L of
(0-1) to be singular, is the violation of uniqueness of F at X - Since the recurrence
(0-1) contains a single dependent variable, its singularities are either zero- or one-
dimensional, i.e. they comsist either of points or of segments of the x-axis. The
simplest point-singularity x =% is given by an isolated finite root of the "alge-

braic" equation :

(0-13) f(x, ¢) - ¢

0

Eq. (0-13) may possess, of course, more than one root. No loss of generality
occurs by considering one isolated root at a time. The corresponding stationary
state is : X, = X = X(c), which is invariant with respect to (0-1) and independent

of n in an obvious manner. It is also a point of non-uniqueness of F. A constant



stationary state of {(0-1) constitutes a fixed point of the mapping, defined by f, of
the x-axis onto itself. The successive iterates LN k=1, 2, ..., of X are called
for conciseness consequents of x of rank k, with respect to the recurrence (0-1).

The statement about the rank is usually omitted unless necessity dictates otherwise.
All consequents of a fixed point X coincide, of course, with %, but this is not neces-
sarily so for all antecedents. Suppose that X admits a non-zero neighbourhood X :

-E1 < X, - X<E, 0< 6(, 0« €, free from other singularities of (0-1). The existen-
ce of such an X, is not always guaranteed a priori, except when the root X is known

to he isolated, but it is useful to make the existence assumption provisionally,
subject to an a posteriori confirmation. Consider a point %, # ¥ inside X,, and the
set of its consequents LI 1, 2, ... Three cases are possible as n increases
indefinitely :

a) the (Euclidian) distance dn between L and X diminishes and approaches zero,

b) dn increases till one of the Xa reaches the boundary of X¢ or leaves X, entirely,
c) dn remains strictly bounded below and above, and all Xn remain inside X..

In the first case the fixed point X is said to be attractive, in the second repulsive,
and in the third neutral. In the terminology of dynamic systems the equivalent state-
ment is : the constant stationary state (or static equilibrium) % is asymptotically
stable, unstable, and (simply or indifferently) stable, respectively. Stability is
uvnderstood to be in the sense of Liapunov, extended to discrete dynamic systems,
except when specified otherwise. The singularity x = x4, eq. (0-5) of the recurrence
(0-3) is an example of an attractive fixed point, whose X, is the whole positive
x—axis, minus the point X = a, excluded from (0-3)~ (0-4) by construction. Since
(0-3) is a linear recurrence, the singularity X, is of course unique (when the singu~

larity at infinity is omitted).

Isolated roots of eq. (0-13) are not the only possible point-singularities
of the recurremce (0—1). In fact, no information ig added to (Q-1) by determining
successively k > 1 consequentsg of L. Eliminating the "intermediate" variables

vers X it is possible to construct from (0-1) the iterated recurrence

xn}l’ n+k-1’

(0-14) X = £ 0 €, k>, f =f,n=0,1,2,

n+k

where the function fk is unambiguously defined and single-valued. The construction of
(0-14) from (0~1) may be tedious, but it is straightforward. The inverse problem of
constructing f from the sole knowledge of fk is not straightforward at all ;

its genmeral solution is still unknown. It is related to the more general problem of
determining fractional iterates of a given function ; for example, determining the
"half-iterate" f(x) of f(f(x)) = g(x) when g is given. The recurrence (0-14) is not
different in principle from the recurrence (0-1), and it may also admit isolated
point-singularities, defined by the roots of the algebraic equation

(0-15) fk(x, ¢) - x =0, k=2,3, ...

The case k = ] is of no interest because eq. (0-15) is then the



same as eq. (0-3) . Traditionally a root x of (0-15) is said to be a cycle (or a
periodic point) of (0-1), provided x is not simultaneously a root of (0-15) when k is
replaced by one of its divisors, unity included. Every x defines k - 1 > 0 distinct
consequents, obtained by means of (0-1), which are also roots of (0-15). The k-th
consequent of amy root coincides with itself. The set of k points forming a cycle

(of order k) is invariant with respect to the iterated recurrence (0-15) in the same
way as a fixed point (a root of (0-13)) is invariant with respect to (0-1). In a
physical, biological, etc., content, when a fixed point of the recurrence (0-1) des~—
cribes a periodic solution ("main" resonance) of the corresponding continuous dynamic
system (example : (0-5), (0-3) and (0-2), respectively), a cycle describes a subharmo-
nic periodic solution (subharmonic resonance or frequency division). A fixed point or
a cycle of a fractional iterate, which is not simultaneously a fixed point or a cycle
for k = integer, describes a harmonic or fractionally periodic solution (a harmonic
resonance or frequency multiplication, and a combination resonance or rational frequen-—

cy conversion, respectively).

The situation of a cycle with regard to neighbouring points, or equivalently,
its stability, is therefore the same as that of a fixed point : a cycle (if isolated)
is either stable, asymptotically stable or unstable. The points of a cycle represent
a stationary state of (0-1), independent of n, modulo-k. A cycle constitutes the
simplest possible non-constant stationary state of the recurrence (0-1). Constant
stationary states of a continuous dynamic system like (0-6), are defined by real roots
x of g(x, ¢) = 0. With the assumed smoothness of g, eq. (0-6) has no continuous

periodic solutions.

Unless the form of f in (0-1) is severely restricted (to smooth monotomnic
functions, for example), the number of different cycles of (0-1) is not finite, and
accumulations of point-singularities are possible inside finite parts of the x—axis
(c£. [S 6]). This is so for the quadratic recurrence (0-11) ; its cycles and bifurca-
tions as a function of ¢ are described in Chapter 1. Recurrences of form (0-1) possess
also invariant segments, provided f(x, c) has at least one local extremum. Two examples
of an invariant segment X, ¢ x < x < ie are shown in Fig. 0-1, where x, X, are uns-—
table fixed points, x is the abscissa of the extremum, and ie a consequent of %, -

Fig. O-1 constitutes an illustration of a rather well known geometrical method of
analyzing real-valued one-dimensional recurrences. From an inspection of Fig. 0-1, it
is obviously that, except for a point set Xp of zero measure, the consequents of any
internal point X of Xi will remain inside X.s without any possibility of escaping or
settling down as n increases. The segment X. does not contain any stable point singu-
larity ; it contains cycles, but these are all unstable. The excluded set Xp consists
of points (and antecedents) of the unstable cycles and of the unstable fixed point x.
In the case of the quadratic recurrence (0-14), the situation of Fig. O-1-a occurs

for several values of c. One example is : k =1, ¢ = -2, x = 2, x, = 0, Ee = f(xe, c) =

-2, X, -2 < x, < 2. An invariant segment like Xi represents a '"complex'","disorderly",



Xn+l=xn xn+|—Xn
f(xe,c) ————— T - ! f(Xe,C) - ' I
[ | : l
| |
| | : f { {
|
I | - Il | =£ (s
i : T,xn+] f(xn,c) | i i X el f(xn,c)
1 |
I A Y Y S N
H I ! : ij, _1 1
1 L1 1 — 1 ——
x x X X n X X X X "

[ e

a) f and g£ continuous b) f continuous

Ix
n

piecewise continuous

Fig. O-1. One type of invariant segment of the recurrence (0-1), ¢ = constant.

"chaotic” or "stochastic" stationary state. If X, is attractive with respect to
neighbouring external points, then it is also called a "strange" attractor, but of
course all strange attractors need not be of this very special type. The adjectives
complex, disorderly, chaotic, stochastic and strange are used synonimously to express

the fact that within the stationary state the behaviour of consequents of an indivi-
dual initial "state" X

dictable :

is "intuitively" (i.e. without the knowledge of (0-1)) unpre~
the function F(xo, n, c), eq. (0-12), possesses some "random" features.
This randomness of F is routinely exploited in digital computers for (pseudo-) random

number generation. The best known recurrence used for this purpose is "Lehmer's
congruential algorithm" :

(0-16)

X

el f(xn, a, b, m) = modm(a+bxn), n=0,1, 2,

where a, b, m, are suitably chosen positive constants (due to a finite computer word
length they are all integers). In contrast to (0-1), the function f in (0-16) is not

continuous with respect to x

In a systematic study of functions H(t), defined implicitly by continuous
dynamic systems, Birkhoff and Andronov (see p., 108-109 of [} 4]) have proposed a clas—
sification of stationary states in the order of increasing complexity (decreasing

orderliness), each class containing the preceding one : 1) constant, II) periodic,

I1I) quasiperiodic, i.e. H(t) L a cos(bmt + cm), max m < =, all angular frequences
b mutually incommensurable, IV) almost periodic, i.e. H(t) the same as in class III),
except m + », V) recurrent and stable in the sense of Poisson, VI) recurrent and uns-
table in the sense of Poisson, and if a presently popular limit-class is added, VII)

(pseudo-) random. If the same classification is used for the stationary states of an



"

autonomous recurrence of order one, then a correct description of an invariant segment
requires a function F, eq. (0-12), whose Birkhoff's class is not less than 1I11). The
problem of determining the exact Birkhoff class of a specific F is not only still open,
but the study of several particular (generic) recurrences suggests that Birkhoff's
classification is too coarse, and probably incomplete. This conjecture is reinforced
by the study of stationary states of second order autonomous recurrences (cf. Chapters

I1I-V).

Consider a continuous dynamic system of form (0-6), where x and g are no
longer scalars but m~vectors, m = 1, 2, ... If the functions g are single-valued and
sufficiently smooth (without any substantial loss of generality : amalytic), then it
is well known that a stationary state belonging to Birkhoff's class II) is impossible
unless m > | ; a state belonging to class IIT), or eventually class IV), is impossible
unless m > 2. Since an autonomous recurrence of order one may possess a stationary
state of class III), or higher, functions defined implicitly by recurrences are intrin-—
sically more complex than those defined by differential equations. Hence, a global
structural equivalence between a recurrence and a differential equation can exist only
when the stationary states of both belong to the same maximal Birkhoff class. This is
the case for the example described by eq. (0-2) and (0-3). A local structural equiva-
lence may exist under less stringent conditions. This is so in all "computationally
stable" discretization schemes currently used in digital computers, the simplest
example of which is the recurrence (0-8). It is well known that a global structural
equivalence between (0-6) and (0-8) is in general (excluding linear equations and

those reducible to linear ones) impossible, no matter how small h > O is chosen.

The main reason for the greater complexity of functions defined by recurrences
is the limited invertibility of the latter, already refered to briefly in connection
with the definition of F in (0-12) in terms of discrete half-trajectories. In fact,
when the function g in (0-6) is single-valued, then the function H in (0-7) can be
determined in principle for t > 0 and t < O with equal facility. An analoguous situa-
tion exists only exceptionally in the case of the recurrence (0~1), as was also mentio-

ned before.

The single-valuedness of £ for n = 0, 1, 2, ... does not imply anything about
the existence and uniqueness of X for n = -1, -2, ..., because the inverse recurrence
(0-17) X = f_](xn+l, c), n=-1, -2,

where f](f_l(x)) = f~](f](x)) = X, may not exist, or it may be multi-valued. For

example the inverse recurrence of (0-11) is

(0-18) X =t Vx - c
n n+l
and there are no real x_ for x < ¢, while for x > ¢ the x_ are double-valued.
n n+1] n+l n

In analogy with the rank of consequents, the Xogm> ™ € 0, of x, are called its



