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ABOUT THE BOOK

This book consists of a collection of papers addressing the
topic: "Machine Intelligénce and Knowledge Engineering for
Robotic Applications”. It is mainly an outcome of a NATO
Advanced Research Workshop held at Maratea, Italy .in May 1986.
The authors are internationally known and hence the book may
be considered an important documentation of the state of the
art in knowledge-based robotics.

The book presents and reviews the recent advances in this sign-
ificant field of research. It covers: robot vision, knowledge
representation and image understanding, robot control and in-
ference systems, task planning and expert systems and integrated
software and hardware systems. Each of these areas is addressed
by several authors who approached the problems differently.
Almost all the ar;icles attempt not only to consider the
theoreticals aspect¥, but also to include in their presentation
challenging issues such as systems implementation and industrial
applications.
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PREFACE 2

This book is the outcome of the NATO Advanced Research Workshop-
on Machine Intelligence and Knowledge Engineering for;Robotic
Applications held at. Maratea, Italy in May 1986. Attendance of
the workshop was by invitation only. Most of the’participants
and speakers are recognized leaders in the field,irepresenting

industry, government and academic compunity worldwide.

The focus of the workshop was to review the recent advances of
machine intelligence and knowledge engineering for robotic appli-
cations. It covers five main areas of interest. They are grouped

into five sections:

1. Robot Vision

2. Knowledge Representation and Image Understanding
3. Robot Control and Inference Systems

4. Task Planning and Expert Systems

5. Software/Hardware Systems

Alsc included in this book are a paper from the Poster Session and
a brief report of the panel discussion on the Future Direction in
Knowledge-Based Robotics. '

Section I of this book consists of four papers. It begins with a
review of the basic concepts of computer vision, with emphasis on
techniques specific for robot vision systems. The next paper pre-
sents a comprehensive 3-D vision system for robotic application.
It covers various theoretical aspects and factory applications of
3-D robot vision. The last two papers deal with computer vision
on moving objects. The first provides an overview on the computa-
tion of motion from a sequence of monocular or stereo images. The
second describes new techniques on time-varying image analysis
with a high-level system for representing and identifying time-
varying characteristics of a large class of physical events.

Section II is on Knowledge Representation and Image Understanding.
The first paper presents a general and flexible knowledge repre-
sentation using attributed graphs and hypergraphs as the basic
data structure. With these representations, model synthesis and
recognition of 3-D objects based on various forms of graph
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morphism algorithms are described. Also presented is a know-
ledge directed method for recognizing and locating 3-D objects
from a single 2-D perspective image. An attempt is made to show
that similar representation can be used to represent the world
environment of a roving robot in both path planning and naviga-
tion. As for the second paper, it describes a kndwledge-based »
system for robotic applications. After a gengral discussion on
knowledge-based system which is able to acquire knowledge in
specified domains, store knowledge in defined structure and
organize knowledge in desired format for access, retrieval, trans-
fer, utilization and extension, it presents some recent results
on a piloted vision system for roving robot navigation, label
re&ding and 3-D object recognition. The next paper addresses
image understanding for robotic application. It describes how
knowledge about the robot environment could be used by an image
understanding algorithm to facilitate the recovery of informa-
tion from images. Two specific applications are described in
the paper: one: demonstrates how knowledge of ego-motion para-
meters of a mobile robot could be used for segmentation of a
scene and the recovery of depth information, and the other shows
how a hypothesize-and-test approach could be used to find road'
edges in real scenes for an autonomous vehicle.

Section III covers the use of machine intelligence and knowledge-
based systems for robot control and target tracking. The first
paper presents a hierarchical control approach for machine in-
telligent robots. It is based on what is defined as Hierarchical
Intelligent Control and the Principle of Decreasing Precision
with Increasing Intelligence. - Entropy is used as a common mea-
sure for the probalistic model involved. The second paper is a
critique on the application of artificial intelligence planning
technique in industrial robots. It shows the limitation of some
‘classical A.I. paradigms in industrial application and recommends
directions for future development. .The third paper investigates
some fairly universal concepts of analogical reasoning in the
context of the block world. Frames are used to represent pro-
biem situations and the three-stage underlying learning process
is also described. The fourth paper is on the overall hardware
and software architecture of a knowledge-based system for change
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detection, target tracking and threat assessment. Based on
target features, numbers and maneuver patterns or changes in
the scene, the system is able to assign threat level and threat
scenario labels to the scene. Thus interpretation of the scene
could be achieved more efficiently and reliably.

Section IV is on task planning and expert systems. The first
paper covers the conceptual, the algorithmic and data structure
of a task and path planning project for a mobile robot. It pre-
sents a world model which includes: a) a set of elementary task
operators; b) three-level environment models, namely, geometrical,
topological and semantic, and c) the functional capabilities of
the machine in the form of specialized processing modules.

The next paper describes a nonlinear planning approach for task
planning and control synthesié for flexible assembly systems.
It proposes assembly sequences based on relational model of part
contacts and attachments. The resulting plans are then consol-
idated into AND/OR graph representation which provides a basis
for efficient scheduling of operations. A simple example is
used to demonstrate the efficiency of this approach in compari-
son to a fixed sequence method. The last paper of this section
presents a robust and practical expert robot welding system
called MARS. It identifies the various relevant variables of
the welding process and investigates their interrelation so as
to develop a mathematical model for feedback control of a weld-
ing robot. The objective of the project is to construct a com-
puterized hierarchical expert welder.

Section V consists of three papers describing several software/
hardware robot systems. The first is on the Edinburgh Designer
System which can serve as a general framework to subport sym—
bolic computing for robotics. It concludes that a) an algebra
engine is required to handle temporal constructs, groups and
tolerances; b) a proposed taxonomy can support activity modules,
c) and an automatic plan formation would require the creation
of a "specialist". The second paper describes the implementa-
tion of complex robot subsystems through distributing computa-
tional load functionally over several micro-processor systems
in both tightly and loosely coupled configurations. This
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approach is used to explore various concepts of sensor data
fusion. An autonomous mobile robot which has provided the
experimental environment is also described. The third paper
discusses the autonomous research robot being developed at

the University of Karlsruhe. The device is able to perform
simple operations in the laboratory. It contains a mobile
platform, a complex sensor system, two manipulators, hierarchical
controls and an expert system. The paper describes how the
fundamental technology developed at the Institute is being
integrated in the robot system. The last paper summarizes the
research and development activities in the field of intelligent
robotics at the Laboratory for Intelligence Systems for the
National Research Council of Canada. It gives a brief des-
cription on the Council's objective and introduces several
projects of the research laboratory on 3-D vision, sensory
based control, multi-processor system architecture and appli-
cations of artificial intelligence. The last paper of this
book is a closing remark based on the Panel Discussion on the
Futuré Direction in Knowledge-Based Robotics. It summarizes
the general discussions, recommendationsiand future directions
of each of the areas covered under the five sections. The
Panel Discussion concluded on an optimistic note, with research-
ers térgeting sensor fusion, advance computer architecture and
ari increase in intelligence in all systems (knowledge base and
sensor) as areas to be actively pursued.

A.,K.C. Wong
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ROBOT VISION

Azrie] Rosenfeld
Center for Automation Research
University of Maryland
» College Park, MD 20742/USA

- 1. INTRODUC.TION

This article reviews the basic concepts of computer vision, with emphasis on tech-
niques that have been used, or could be used, in robot vision systems. Sections 2 and 3
discuss two- and three-dimensional vision systems, respectively, while Section 4 briefly
discusses some other vision topics. References to basic papers or review papers are
given in connection with each topic.

2. TWO-DIMENSIONAL VISION

The general goal of computer vision is to derive a description of a scene by analyz-
ing one or more images of the scene. In many situations the scene itself is basically
two-dimensional; for example, a robot might be dealing with flat parts lying on s flat
surface, or might be looking for holes in such a surface. Vision is much easier for two-
dimensional (2D) scenes, and not surprisingly, the earliest work on vision dealt with
such scenes. This section outlines the basic steps in the 2D vision process, and then
presents a review of some of the methods used to carry out these steps. Three-
dimensional vision is more complicated; it will be treated in the next section.

2.1. The 2D Vision Process

In order for a robot to recognize parts, holes, etc. on a surface—in general:
“objects”—it must first be able to distinguish the objects form the rest of the surface.
In other words, it must be able to single out pieces of the image that (hopefully)
correspond to the objects. This process of extracting subsets of an image that
correspond to relevant parts of the scene is called segmentation.

Once a subset has been extracted from an image, it is usually necessary to measure
various geometric properties of the subset (size, shape, ete.). These measurements can
serve as a basis for recognizing the subset as representing a given object, for determin-
ing the position and orientation of the object, etc. They may also serve as a basis for
further segmenting the subset; for example, if two objects touch or overlap, they may

NATO ASI Series, Vol. F33
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be extracted as a single subset, and it may than be necessary to break the subset into
two pieces on the basis of geometric criteria (e.g., to break it into convex pieces). This
stage of the computer vision process is called geomelric analysis. Different algorithms
for geometric analysis can be designed, depending on how the image subsets are
represented in the computer: thus a topic closely related to geometric analysis is
geomelric representation of image subsets.

Recognition of objects by analyzing subsets of an image can vary greatly in
difficulty, depending on the complexity of the objects. If the objects that might be
present in the scene differ greatly from one another, simple “template matching” tech-

"niques can be used to distinguish them; in this situation it may not even be necessary

to explicitly extract the objects from the rest of the j image. More generally, objects can
often be recognized by the fact that they have a characteristic set of geometric property
values; this ‘“feature matching” approach was used in the well-known ““SRI vision
module” (1). If the objects are complex, it may be necessary to break up the recogni-
tion process into stages: to first detect subobjects and recognize their properties, and
then to recognize the objects as combinations of subobjects in specific relationships; this
is known as the “structure matchmg approach.

2.2. Segmentatlon

A digital image 1s a discrete array of numbers representing brightness values at reg-
u,la.rly spaced points in the scene. The ‘elements of a digital image are called pizels, and
thelr values are called gray levels. (Color has not been extensively used as yet in robot
“visfon systems; color images will be briefly discussed in the next subsection.) This sec-

" tion reviews basic methods of segmenting digital images into subsets. For general sur-

veys of image segmentation see (2,3). The effectiveness of a segmentation technique
depends on the properties of the class of images to which it is applied (4); approaches to
defining, or ““modeling’, classes of images are reviewed in (5).

2.2.1. Thresholding

If an object differs significantly in brightness from its background, it gives rise to a
set of pixels in the image that have significantly different gray levels from the rest of
the image. (Large brightness differences between an object and its background can
often be produced by controlling the illumination so as to silhouette or edge-light the
object.) Such i image subsets can be extracted from the image by thresholding the pixel
gray levels, e.g., classifying a pixel as “light” or “dark” depending on whether its gray
level lies above or below a specified ‘‘threshold” level.

If the 1llumination of the scene can be controlled and the sensor can be calibrated,
it may be possible to set a threshold once and for all to correctly segment scenes of a



given class; but in general it will be necessary to determine the best threshold for each
individual image. If the objects occupy a significant fraction of the scene, this can be
done by examining the histogram of the image, which is a graph showing how often
each gray level occurs in the image (8). This histogram should have two peaks, one
representing background gray levels and the other object gray levels; these ranges of
gray levels give rise to peaks because they occur relatively frequently. Intermediate
gray levels sheuld be relatively rare, and should give rise to a valley on the hlstogram,'
between the peaks. A good gray level at which to set the threshold is evidently the
level corresponding to the bottom of the valley, since nearly all object pixels and nearly
all background pixels will be on opposite sides of this-threshold.

If the illumination of the scene is not uniform, dark objects at one side of the scene
may actually be brighter than the light background at the other side, so that the
objects cannot be separated from the background by simple thresholding. One way to
handle this situation (7) is to divide the image into blocks and pick a threshold for each
block by analyzing its histogram. These thresholds can then be interpolated to yield a
‘“‘variable threshold” that properly segments the entire image. A survey of threshold
selection techniques can be found in (8).

The color at a point in a scene can be characterized by a triple of numbers
representing, for example, the values of red, green, and blue “color components”’. Thus
a digital color image is an array of triples of values. If these pixel values are plotted as
dots in “color space”, an object (or background) of a given eolor gives rise to a cluster
of dots. These clusters are analogous to histogram peaks, and the image can be éeg-
mented into regions having different colors by partitioning the color space so as to
separate the clusters. This approach is classically used to segment images obtained by
multispectral scanners in remote sensing, but it has not yet found significant use in
robot vision. '

2.2.2. Edge detection

Small objects are not easy to extract from their background by thresholding,
because the histogram peaks that they produce may be too small to detect reliably.
Similarly, if a scene contains many objects of different brightnesses, it is not easy to
extract them by thresholding, because their histogram peaks overlap. Another method
of segmentation can be used in such cases, provided the objects have relatively uniform
brightness and that they contrast strongly with their immediate backgrounds. This
implies that the rate of change of gray level is low within the objects, but high at the
borders of the objects. The objects can thus be extracted by edge detection, i.e., by
detecting pixels at which the rate of change of gray level is high.



The classical method of detecting edges in an image is to apply an isotropic deriva-
tive operator, such as the gradient operator, to the image; such an operator will have
high values at edges, no matter what their orientations (9). Many digital approxima-
tions to the gradient have been used for this purpose; an especially simple example is

the “Roberts cross’ operator (10), and another frequently used operator is the ““Sobel
operator’” (11).

Several other basic methods of edge detection are the following: (a) Match the
image in the vicinity of each pixel with “templates” of step functions in different orien-

tations; lfta good match is detected, an edge in that orientation is likely to be present -

(12). (b) Fit a polynomial surface to the image gray levels in the neighborhood of each
pixel; if the .gradient of the fitted surface is high, an edge is likely to be present (12).
(c) Fit a steﬁ function to the image gray levels in the neighborhood of each pixel; if this
step has high contrast, an edge is likely to be present (13). (d) Apply a Laplacian
operator to the image; the zero-crossings of the Laplacian values correspond to edges
(14). An early survey of edge detection techniques can be found in (15).

2.2.3. Texture apalysis

* I an object is not uniform in brightness, but rather is patterned, neither threshold-
ing nor edge detection can be used to extract it, since its pixels do not have gray levels
in a narrow range, and it has many internal edges. Nevertheless, such an object may
be distinguishable from its background because of its characteristic pattern of gray lev-
els, or “'visual texture’. For a general survey of visual texture analysis see (16).

Textures can be characterized by sets of local properties of their pixels, i.e., by the
fact that in a textured region, certain local patterns of gray levels tend to be present in
the neighborhood of each pixel. An early survey of local properties that can be used to
distinguish textures can be found in (17). By computing a set of such properties at
each pixel, the pixel can be characterized by a set of numbers (compare the discussion
of color images in the subsection on thresholding), and the image can be segmented into
differently textured regions by partitioning the “‘local property space' so as to separate

the clusters corresponding to the regions. Since local pruperties tend to be more vari--

able than colors, some degree of local averaging should be performed first in order to
make the clusters more compact. Similarly, by computing average values of local pro-
perties and then taking differences of these averages, one can compute a “texture gra-
diefit” at each pixel and use it to detect “texture edges y 1.e., edges between differently
textured regions (18).

A powerful method of characterizing textures is by performing various types of
“shrinking” and “‘expanding” operations on them and analyzing the results; for exam-
ple, thin patterns disappear under small amounts of shrinking, while closely spaced

16



patterns “fuse” under small amounts of expanding. This approach to image analysis
has been used in a variety of applications for over 20 Years; a recent comprehensive
treatment is (19).

2.2.4. Tracking and region growing

The methods of segmentation discussed so far treat each pixel (or its neighbor-
hood) independently; they are oblivious as to whether the resulting pixels constitute a
connected region, or whether the resulting edge segments constitute a smooth, high-
contrast boundary. Better-quality regio;ls or edges can be obtained by requiring that
the results be locally consistent, i.e., that the regions be connected or thst the edges
smoothly continue one another. Methods of “tracking” edges sequentially, pixel by
pixel, or of ‘“‘growing” regions, can be used to insure continuity. (A survey of region
growing techniques can be found in (20).) A more powerful, but computationally more
expensive, approach is to require (piecewise) global consistency, e.g., to search for
regions that are optimal with respect to constancy or smoothness of gray level, or for
edges that are optimal with respect to contrast and smoothness of direction. A useful
approach to finding globally consistent regions is a split-and-merge process in which
regions are split if they are inconsistent, and pairs of adjacent regions are merged if
their union is consistent. For a general treatment of image segmentation by partition-
ing into consistent regions see (21).

2.3. Geometric Analysis

Once 2 region has been segmented from an image, it can be réi)resented by a
“binary image” in which pixels belonging to the région have value 1, and those belong-
ing to the background have value 0. Various geometric properties of the region can be
computed from this binary image at low computational cost. This process is sometimes
referred to as bsnary vision. The following subsections discuss basic geometric proper-
ties and their measurement, as well as other, more compact ways of representing
regions.

2.3.1. Connectivity and borders

If a scene contains several objects on a background, segmenting an image of the
scene yields the entire set of pixels belonging to all the objects; it does not distinguish
the objects from one another. In order to deal with one dbject' at a time, it is necessary
to “label” the object pixels so that pixels belonging to the same object get the same
label (and conversely). This process is called connected component labeling (22); it
assigns distinétive labels to sets of object pixels that are all mutually connected. The
theory of connected régions in digital_ pictures is developed in (23). Connectedness is
the basic principle that underlies the process of counting objects (i.e., connected



regions) in an image.

The border of a region consists of these region pixels that are adjacent to non-
region pixels. These border pixels lie on a set of curves, one representing the “outer
border” of the region and the others representing the borders of its holes, if any. To
label these borders individually, a “border following™ process can be used (22) that,
starting from any border pixel, successively visits all the pixels belonging to that border
until it returns to the starting pixel.

2.3.2. Size and shape properties

The area of a region is (approximately) the number of it pixels (i.e., the number of
pixels having a particular component label). The perimeter is the number of border
pixels, or (for a specific border) the number of moves required to follow the border com-
pletely around. A frequently used shape measure is area/(perimeter)?, which measures
the compactness of the region. The elongatedness of a region can be defined using a
process of shrinking and area measurement; a region is elongated if it has large area but
disappears under a small amount of shrinking. Distance measures are another source of
useful shape information; on measures of distance in a digital image see (24), and on the
approximation of Euclidean distance see (25).

Many shape properties of a region can be derived by measuring the curvature (i.e.,
rate of change of direction) of its border. Concavities correspond to parts;f the border
where the curvature is “negative” (in the sense that vdirection is changing counterclock-
wise while the border is being followed clockwise). (On the theory of concavity in digi-
tal images see (26); on the characterization of straight line segments see (27).) Corners
are border points where the curvature has a high (positive or negative) value. Such
properties are useful in segmenting a region into parts when necessary; for example,
when two objects in the scene touch or overlap, they give rise to a single connected
region in the image, but they can be “cut apart”, e.g., by making a cut that joins the
bottoms of two deep concavities. A review of shape analysis algorithms for contours
(i.e., borders) can be found in (28), and a general survey of shape analysis techniques
can be found in (29). '

The moments of a region provide useful information about its shape (30). The
(¢,7) moment m is defined as Yz’ y/ summed over all pixels (z, y) of ‘the object.
(Moments can also be defined for gray-level images by weighing pixel (z, y) by its gray
level.) Thus m y, is the area of the region, and (m 10/m 09, M g1/ m o) are the coordinates
of the centroid of the region. The principal azis of a region is the line (through the cen-
troid) about which the region’s moment of inertia is least; its slope tang satisfies the
quadratic equation tan®d + (m ,, - mgo)tand/m;; — 1 = 0, where the m's are moments

-



