Paolo Giorgini
Jorg P. Miiller
James Odell (Eds.)

e
T
i
(<P
t—
W
e
i
b
e
o
e
W

Survey

Agent-Oriented
Software
Engineering IV

4th International Workshop, AOSE 2003
Melbourne, Australia, July 2003

LNCS 2935

Revised Papers

[ExMmAS MAS 2 |

A B n
S éw&&&
R @E\J g&

FIPA compliant FIPA gateway | | non-FIPA compliant

€) Springer

TPBfﬁf”ﬁj

Az6S Paolo Giorgini Jorg P. Miiller
202 % James Odell (Eds.)

Agent-Oriented
Software
Engineering IV

4th International Workshop, AOSE 2003
Melbourne, Australia, July 15, 2003
Revised Papers

A

E200401594

©)) Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Paolo Giorgini

University of Trento, Department of Information and Communication Technology
Via Sommarive, 14, 38050 Povo, Trento, Italy

E-mail: paolo.giorgini @dit.unitn.it

Jorg P. Miiller

Siemens AG, Corporate Technology
Intelligent Autonomous Systems
Otto-Hahn-Ring 6, 81730 Munich, Germany
E-mail: joerg.p.mueller @siemens.com

James Odell

James Odell Associates

3646 West Huron River Drive, Ann Arbor, MI 48103, USA
E-mail: email @jamesodell.com

Cataloging-in-Publication Data applied for
A catalog record for this book is available from the Library of Congress.

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): D.2,1.2.11, F.3, D.1, D.2.4, D.3

ISSN 0302-9743
ISBN 3-540-20826-7 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Protago-TeX-Production GmbH
Printed on acid-free paper SPIN: 10981368 06/3142 543210

Preface

The explosive growth of application areas such as electronic commerce, enter-
prise resource planning and mobile computing has profoundly and irreversibly
changed our views on software systems. Nowadays, software is to be based on
open architectures that continuously change and evolve to accommodate new
components and meet new requirements. Software must also operate on diffe-
rent platforms, without recompilation, and with minimal assumptions about its
operating environment and its users. Furthermore, software must be robust and
autonomous, capable of serving a naive user with a minimum of overhead and
interference.

Agent concepts hold great promise for responding to the new realities of soft-
ware systems. They offer higher-level abstractions and mechanisms that address
issues such as knowledge representation and reasoning, communication, coordi-
nation, cooperation among heterogeneous and autonomous parties, perception,
commitments, goals, beliefs, and intentions, all of which need conceptual mode-
ling. On the one hand, the concrete implementation of these concepts can lead
to advanced functionalities, e.g., in inference-based query answering, transaction
control, adaptive workflows, brokering and integration of disparate information
sources, and automated communication processes. On the other hand, their rich
representational capabilities allow more faithful and flexible treatments of com-
plex organizational processes, leading to more effective requirements analysis
and architectural/detailed design.

In keeping with its very successful predecessors, AOSE 2000, AOSE 2001,
and AOSE 2002 (Lecture Notes in Computer Science Volumes 1957, 2222, and
2585), the AOSE 2003 workshop sought to examine the credentials of agent-
based approaches as a software engineering paradigm, and to gain an insight
into what agent-oriented software engineering will look like.

AOSE 2003 was hosted by the 2nd International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2003) held in Melbourne,
Australia on July 2003. The workshop received 43 submissions, and 15 of them
were accepted for presentation (an acceptance rate of 30%). These papers were
reviewed by at least 3 members of an international program committee compo-
sed of 25 researchers. The submissions followed a call for papers on all aspects
of agent-oriented software engineering, and showed the range of results achieved
in several areas, such as methodologies, modeling, architectures, and tools.

The workshop program included an invited talk, a technical session in which
the accepted papers were presented and discussed, and a closing plenary session.
It congregated more than 50 attendees, among them researchers, students, and
practitioners, who contributed to the discussion of research problems related to
the main topics in AOSE.

This volume contains revised versions of the 15 papers presented at the works-
hop. Additionally, it contains an invited contribution by Bernhard Bauer and
Jorg Miiller on “Using UML in the Context of Agent-Oriented Software En-
gineering: State of the Art.” We believe that this thoroughly prepared volume

VI Preface

is of particular value to all readers interested in the key topics and most recent
developments in the very exciting field of agent-oriented software engineering.

We thank the authors, the participants, and the reviwers for making AOSE
2003 a high-quality scientific event.

November 2003 Paolo Giorgini
Jorg P. Miiller
James Odell

Organization

Organizing Committee

Paolo Giorgini (Co-chair)

Department of Information and Communication Technology

University of Trento, Italy

Email: paolo.giorgini@dit.unitn.it

Jorg P. Miiller (Co-chair)
Siemens AG, Germany

Email: joerg.mueller@mchp.siemens.de

James Odell (Co-chair)

James Odell Associates, Ann Arbor, MI, USA

Email: email@jamesodell.com

Steering Committee

Paolo Ciancarini, University of Bologna, Italy
Gerhard Weiss, Technische Universitaet Muenchen, Germany
Michael Wooldridge, University of Liverpool, UK

Program Committee

Bernard Bauer (Germany)
Federico Bergenti (Italy)

Scott DeLoach (USA)
Marie-Pierre Gervais (France)
Olivier Gutknecht (France)
Brian Henderson-Sellers (Australia)
Michael Huhns (USA)

Carlos Iglesias (Spain)
Nicholas Jennings (UK)
Catholijn Jonker (Netherlands)
Liz Kendall (Australia)

David Kinny (Australia)
Manuel Kolp (Belgium)

Yannis Labrou (USA)
Juergen Lind (Germany)
John Mylopolous (Canada)
Andrea Omicini (Italy)
Van Parunak (USA)
Anna Perini (Italy)
Marco Pistore (Italy)
Onn Shehory (Israel)
Gerhard Weiss (Germany)
Paola Turci (Italy)

Eric Yu (Canada)

Franco Zambonelli (Italy)

Auxiliary Reviewers: Paolo Busetta, Julio Cesar Leite, Aizhong Lin, Matthias

Nickles, Michael Rovatsos, Marco Roveri, Arnon Sturm, Angelo Susi, Martijn
Schut

Lecture Notes in Computer Science 2935
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Hong Kong
London
Milan

Paris

Tokyo

Author Index

Athanasiadis, Ioannis N. 96
Aknine, Samir 138

Bauer, Bernhard 1
Botti, Vicente 25
Bruecksmer, Sven 123,201

Dyke Parunak, H. Van 123, 201

Ferber, Jacques 214
Fleischer, Mitch 123
Fuentes, Rubén 110

Georgousopoulos, Christos 167
Giret, Adriana 25
Gémez-Sanz, Jorge J. 110
Goradia, Hrishikesh J. 153
Gutknecht, Olivier 214

Hassas, Salima 185

Jouvin, Denis 185
Juan, Thomas 53

Karageorgos, Anthony 167
Kehagias, Dionisis 96
Klein, Mark 85

Manson, G. 69
Mao, XinJun 231
Michel, Fabien 214

Mitkas, Pericles A. 96
Mouratidis, Haralabos 69
Miiller, Jorg P. 1

Odell, James J. 69, 123, 201

Pavén, Juan 110
Perini, Anna 36
Pistore, Marco 36
Poggi, Agostino 69

Qi, ZhiChang 231
Quenum, José Ghislain 138

Rana, Omer F. 167
Rimassa, Giorgio 69

Roveri, Marco 36

Sauter, John 201

Slodzian, Aurélien 138
Sterling, Leon 53

Susi, Angelo 36
Symeonidis, Andreas L. 96

Turci, Paola 69
Vidal, José M. 153
Yan, Qi 231

Zhu, Hong 231

£s

Lecture Notes in Computer Science

For information about Vols. 1-2844

Vol. 2845: B. Christianson, B. Crispo, J.A. Malcolm, M.
Roe (Eds.), Security Protocols. Proceedings, 2002. VIII,
243 pages. 2004.

Vol. 2847: R. de Lemos, T.S. Weber, J.B. Camargo Jr.
(Eds.), Dependable Computing. Proceedings, 2003. XIV,
371 pages. 2003.

Vol. 2848: FE. Fich (Ed.), Distributed Computing. Pro-
ceedings, 2003. X, 367 pages. 2003.

*Vol. 2849: N. E}arcfa, J.M. Martinez, L. Salgado (Eds.),

Visual Content Processing and Representation. Proceed-
ings, 2003. XII, 352 pages. 2003.

Vol. 2850: M.Y. Vardi, A. Voronkov (Eds.), Logic for
Programming, Artificial Intelligence, and Reasoning. Pro-
ceedings, 2003. XIII, 437 pages. 2003. (Subseries LNAI)

Vol. 2851: C. Boyd, W. Mao (Eds.), Information Security.
Proceedings, 2003. XI, 443 pages. 2003.

Vol. 2852: E.S. de Boer, M.M. Bonsangue, S. Graf, W.-P.
de Roever (Eds.), Formal Methods for Components and
Objects. Proceedings, 2003. VIII, 509 pages. 2003.

Vol. 2853: M. Jeckle, L.-J. Zhang (Eds.), Web Services —
ICWS-Europe 2003. Proceedings, 2003. VIII, 227 pages.
2003.

* "Vol. 2854: J. Hoffmann, Utilizing Problem Structure in

Planning. XIII, 251 pages. 2003. (Subseries LNAI)

Vol. 2855: R. Alur, 1. Lee (Eds.), Embedded Software.
Proceedings, 2003. X, 373 pages. 2003.

Vol. 2856: M. Smirnov, E. Biersack, C. Blondia, O.
Bonaventure, O. Casals, G. Karlsson, George Pavlou, B.

Quoitin, J. Roberts, I. Stavrakakis, B. Stiller, P. Trim-
intzios, P. Van Mieghem (Eds.), Quality of Future Internet

“ Services. IX, 293 pages. 2003.

s _Vol. 2857: M. A. Nascimento, E.S. de Moura, A.L. Oliveira

(Eds.), String Processing and Information Retrieval. Pro-
ceedings, 2003. XI, 379 pages. 2003.

- Vol. 2858: A. Veidenbaum, K. Joe, H. Amano, H. Aiso
(Eds.), High Performance Computing. Proceedings, 2003.
XV, 566 pages. 2003.

_ Vol. 2859: B. Apolloni, M. Marinaro, R. Tagliaferri (Eds.),

Neural Nets. Proceedings, 2003. X, 376 pages. 2003.

Vol. 2860: D. Geist, E. Tronci (Eds.), Correct Hardware
Design and Verification Methods. Proceedings, 2003. XII,
426 pages. 2003.

Vol. 2861: C. Bliek, C. Jermann, A. Neumaier (Eds.),
Global Optimization and Constraint Satisfaction. Pro-
ceedings, 2002. XII, 239 pages. 2003.

Vol. 2862: D. Feitelson, L. Rudolph, U. Schwiegelshohn
(Eds.), Job Scheduling Strategies for Parallel Processing.
Proceedings, 2003. VII, 269 pages. 2003.

Vol. 2863: P. Stevens, J. Whittle, G. Booch (Eds.), «<UML»
2003 - The Unified Modeling Language. Proceedings,
2003. X1V, 415 pages. 2003.

Vol. 2864: A.K. Dey, A. Schmidt, J.E. McCarthy (Eds.),
UbiComp 2003: Ubiquitous Computing. Proceedings,
2003. XVII, 368 pages. 2003.

, Please contact your bookseller or Springer-Verlag .

Vol. 2865: S. Pierre, M. Barbeau, E. Kranakis (Eds.), Ad-
Hoc, Mobile, and Wireless Networks. Proceedings, 2003.
X, 293 pages. 2003.

Vol. 2866: J. Akiyama, M. Kano (Eds.), Discrete and Com-
putational Geometry. Proceedings, 2002. VIII, 285 pages.
2003.

Vol. 2867: M. Brunner, A. Keller (Eds.), Self-Managing
Distributed Systems. Proceedings, 2003. XIII, 274 pages.
2003.

Vol. 2868: P. Perner, R. Brause, H.-G. Holzhiitter (Eds.),
Medical Data Analysis. Proceedings, 2003. VIII, 127
pages. 2003.

Vol. 2869: A. Yazici, C. Sener (Eds.), Computer and Infor-
mation Sciences — ISCIS 2003. Proceedings, 2003. XIX,
1110 pages. 2003.

Vol. 2870: D. Fensel, K. Sycara, J. Mylopoulos (Eds.),
The Semantic Web - ISWC 2003. Proceedings, 2003. XV,
931 pages. 2003.

Vol. 2871: N. Zhong, Z.W. Ra$, S. Tsumoto, E. Suzuki
(Eds.), Foundations of Intelligent Systems. Proceedings,
2003. XV, 697 pages. 2003. (Subseries LNAI)

Vol. 2873: J. Lawry, J. Shanahan, A. Ralescu (Eds.),
Modelling with Words. XIII, 229 pages. 2003. (Subseries
LNAI)

Vol. 2874: C. Priami (Ed.), Global Computing. Proceed-
ings, 2003. XIX, 255 pages. 2003.

Vol. 2875: E. Aarts, R. Collier, E. van Loenen, B. de Ruyter
(Eds.), Ambient Intelligence. Proceedings, 2003. XI, 432
pages. 2003.

Vol. 2876: M. Schroeder, G. Wagner (Eds.), Rules and
Rule Markup Languages for the Semantic Web. Proceed-
ings, 2003. VII, 173 pages. 2003.

Vol. 2877: T. Bohme, G. Heyer, H. Unger (Eds.), Inno-
vative Internet Community Systems. Proceedings, 2003.
VIII, 263 pages. 2003.

Vol. 2878: R.E. Ellis, T.M. Peters (Eds.), Medical Im-
age Computing and Computer-Assisted Intervention -
MICCALI 2003. Part I. Proceedings, 2003. XXXIII, 819
pages. 2003.

Vol. 2879: R.E. Ellis, T.M. Peters (Eds.), Medical Im-
age Computing and Computer-Assisted Intervention -
MICCAI 2003. Part II. Proceedings, 2003. XXXIV, 1003
pages. 2003.

Vol. 2880: H.L. Bodlaender (Ed.), Graph-Theoretic Con-
cepts in Computer Science. Proceedings, 2003. XI, 386
pages. 2003.

Vol. 2881: E. Horlait, T. Magedanz, R.H. Glitho (Eds.),
Mobile Agents for Telecommunication Applications. Pro-
ceedings, 2003. IX, 297 pages. 2003.

Vol. 2882: D. Veit, Matchmaking in Electronic Markets.
XV, 180 pages. 2003. (Subseries LNAI)

Vol. 2883: J. Schaeffer, M. Miiller, Y. Bjornsson (Eds.),
Computers and Games. Proceedings, 2002. XI, 431 pages.
2003.

[

f

Vol. 2884: E. Najm, U. Nestmann, P. Stevens (Eds.), For-
mal Methods for Open Object-Based Distributed Systems.
Proceedings, 2003. X, 293 pages. 2003.

Vol. 2885: J.S. Dong, J. Woodcock (Eds.), Formal Meth-
ods and Software Engineering. Proceedings, 2003. XI, 683
pages. 2003.

-
Vol. 2886: 1. Nystrom, G. Sanniti di Baja, S. Svensson
(Eds.), Discrete Geometry for Computer Imagery. Pro-
ceedings, 2003. XII, 556 pages. 2003.

Vol. 2887: T. Johansson (Ed.), Fast Software Encryption.
Proceedings, 2003. IX, 397 pages. 2003.

Vol. 2888: R. Meersman, Zahir Tari, D.C. Schmidt et
al. (Eds.), On The Move to Meaningful Internet Systems
2003: CooplS, DOA, and ODBASE. Proceedings, 2003.
XXI, 1546 pades. 2003.

Vol. 2889: Robert Meersman, Zahir Tari et al. (Eds.), On
The Move to Meaningful Internet Systems 2003: OTM
2003 Workshops. Proceedings, 2003. XXI, 1096 pages.
2003. :

Vol. 2890: M. Broy, A.V. Zamulin (Eds.), Perspectives of
System Informatics. Proceedings, 2003. XV, 572 pages.
2003.

Vol. 2891: J. Lee, M. Barley (Eds.), Intelligent Agents and
Multi-Agent Systems. Proceedings, 2003. X, 215 pages.
2003. (Subseries LNAI)

Vol. 2892: F. Dau, The Logic System of Concept Graphs
with Negation. X1, 213 pages. 2003. (Subseries LNAI)

Vol. 2893: J.-B. Stefani, I. Demeure, D. Hagimont (Eds.),

- Distributed Applications and Interoperable Systems. Pro-

ceedings, 2003. XII1, 311 pages. 2003.

Vol. 2894: C.S. Laih (Ed.), Advances in Cryptology - ASI-
ACRYPT 2003. Proceedings, 2003. XIII, 543 pages. 2003.

Vol. 2895: A. Ohori (Ed.), Programming Languages and
Systems. Proceedings, 2003. XIII, 427 pages. 2003.

Vol. 2896: V.A. Saraswat (Ed.), Advances in Comput-
ing Science — ASIAN 2003. Proceedings, 2003. VIII, 305
pages. 2003.

Vol. 2897: O. Balet, G. Subsol, P. Torguet (Eds.), Virtual
Storytelling. Proceedings, 2003. XI, 240 pages. 2003.

Vol. 2898: K.G. Paterson (Ed.), Cryptography and Coding.
Proceedings, 2003. IX, 385 pages. 2003.

Vol. 2899: G. Ventre, R. Canonico (Eds.), Interactive Mul-
timedia on Next Generation Networks. Proceedings, 2003.
X1V, 420 pages. 2003.

Vol. 2900: M. Bidoit, P.D. Mosses, CASL User Manual.
XI11, 240 pages. 2004.

Vol. 2901: F. Bry, N. Henze, J. Maluszyiiski (Eds.), Prin-
ciples and Practice of Semantic Web Reasoning. Proceed-
ings, 2003. X, 209 pages. 2003.

Vol. 2902: F. Moura Pires, S. Abreu (Eds.), Progress in
Artificial Intelligence. Proceedings, 2003. XV, 504 pages.
2003. (Subseries LNAI).

Vol. 2903: T.D. Gedeon, L.C.C. Fung (Eds.), A1 2003: Ad-
vances in Artificial Intelligence. Proceedings, 2003. XVI,
1075 pages. 2003. (Subseries LNAI).

Vol. 2904: T. Johansson, S. Maitra (Eds.), Progress in
Cryptology - INDOCRYPT 2003. Proceedings, 2003. XI,
431 pages. 2003.

Vol. 2905: A. Sanfeliu, J. Ruiz-Shulcloper (Eds.), Progress
in Pattern Recognition, Speech and Image Analysis. Pro-
ceedings, 2003. X VII, 693 pages. 2003.

Vol. 2904: T. Johansson, S. Maitra (Eds.), Progress in
Cryptology - INDOCRYPT 2003. Proceedings, 2003. XI,
431 pages. 2003.

Vol. 2905: A. Sanfeliu, J. Ruiz-Shulcloper (Eds.), Progress
in Pattern Recognition, Speech and Image Analysis. Pro-
ceedings, 2003. XVII, 693 pages. 2003.

Vol. 2906: T. Ibaraki, N. Katoh, H. Ono (Eds.), Algorithms
and Computation. Proceedings, 2003. XVII, 748 pages.
2003.

Vol. 2908: K. Chae, M. Yung (Eds.), Information Security
Applications. Proceedings, 2003. XII, 506 pages. 2004.

Vol. 2910: M.E. Orlowska, S. Weerawarana, M.P. Papa-
zoglou, J. Yang (Eds.), Service-Oriented Computing —
ICSOC 2003. Proceedings, 2003. XIV, 576 pages. 2003.

Vol. 2911: T.M.T. Sembok, H.B. Zaman, H. Chen, S.R.
Urs, S.H.Myaeng (Eds.), Digital Libraries: Technology
and Management of Indigenous Knowledge for Global
Access. Proceedings, 2003. XX, 703 pages. 2003.

Vol. 2913: T.M. Pinkston, V.K. Prasanna (Eds.), High Per-
formance Computing — HiPC 2003. Proceedings, 2003.
XX, 512 pages. 2003.

Vol. 2914: P.K. Pandya, J. Radhakrishnan (Eds.), FST TCS
2003: Foundations of Software Technology and Theo-
retical Computer Science. Proceedings, 2003. XIII, 446
pages. 2003.

Vol. 2916: C. Palamidessi (Ed.), Logic Programming. Pro-
ceedings, 2003. XII, 520 pages. 2003.

Vol. 2918: S.R. Das, S.K. Das (Eds.), Distributed Com-
puting - IWDC 2003. Proceedings, 2003. XIV, 394 pages.
2003.

Vol. 2920: H. Karl, A. Willig, A. Wolisz (Eds.), Wire-
less Sensor Networks. Proceedings, 2004. X1V, 365 pages.
2004.

Vol. 2922: F. Dignum (Ed.), Advances in Agent Communi-
cation. Proceedings, 2003. X, 403 pages. 2004. (Subseries
LNAI).

Vol. 2923: V. Lifschitz, I. Niemeli (Eds.), Logic Program-
ming and Nonmonotonic Reasoning. Proceedings, 2004.
IX, 365 pages. 2004. (Subseries LNAI).

Vol. 2927: D. Hales, B. Edmonds, E. Norling, J. Rouchier
(Eds.), Multi-Agent-Based Simulation III Proceedings,
2003. X, 209 pages. 2003. (Subseries LNAI).

Vol. 2928: R. Battiti, M. Conti, R. Lo Cigno (Eds.), Wire-
less On-Demand Network Systems. Proceedings, 2004.
X1V, 402 pages. 2004.

Vol. 2929: H. de Swart, E. Orlowska, G. Schmidt, M.
Roubens (Eds.), Theory and Applications of Relational
Structures as Knowledge Instruments. Proceedings. VII,
273 pages. 2003.

Vol. 2932: P. Van Emde Boas, J. Pokorny, M. Bielikové,

J. Stuller (Eds.), SOFSEM 2004: Theory and Practice of
Computer Science. Proceedings, 2004. XIII, 385 pages.
2004.

Vol. 2935: P. Giorgini, J.P. Miiller, J. Odell (Eds.), Agent-
Oriented Software Engineering IV. Proceedings, 2003. X,
247 pages. 2004.

Vol. 2937: B. Steffen, G. Levi (Eds.), Verification, Model
Checking, and Abstract Interpretation. Proceedings, 2004.
X1, 325 pages. 2004.

Vol. 2950: N. Jonoska, G. Piun, G. Rozenberg (Eds.), As-
pects of Molecular Computing. XI, 391 pages. 2004.

Table of Contents

Modeling Agents and Multiagent Systems

Using UML in the Context of Agent-Oriented Software Engineering:
State of the Art
Bernhard Bauer, Jorg P. Miiller

Towards a Recursive Agent Oriented Methodology
for Large-Scale MAS
Adriana Giret, Vicente Botti

Agent-Oriented Modeling by Interleaving Formal and
Informal Specification
Anna Perini, Marco Pistore, Marco Roveri, Angelo Susi

The ROADMAP Meta-model for Intelligent Adaptive Multi-agent
Systems in Open Environments
Thomas Juan, Leon Sterling

Modeling Deployment and Mobility Issues in Multiagent Systems

Using AUML o
Agostino Poggi, Giorgio Rimassa, Paola Turci, James J. Odell,
Haralabos Mouratidis, G. Manson

Methodologies and Tools

A Knowledge-Based Methodology for Designing Reliable
Multi-agent Systems.o i
Mark Klein

A Framework for Constructing Multi-agent Applications and

Training Intelligent Agentso oo io..
Pericles A. Mitkas, Dionisis Kehagias, Andreas L. Symeonidis,
loannis N. Athanasiadis

Activity Theory for the Analysis and Design of Multi-agent Systems
Rubén Fuentes, Jorge J. Gémez-Sanz, Juan Pavén

A Design Taxonomy of Multi-agent Interactions
H. Van Dyke Parunak, Sven Brueckner, Mitch F. leischer,
James J. Odell

Automatic Derivation of Agent Interaction Model from Generic
Interaction Protocols
José Ghislain Quenum, Aurélien Slodzian, Samir Aknine

X Table of Contents

Patterns, Architectures, and Reuse

Building Blocks for Agent Design L
Hrishikesh J. Goradia, José M. Vidal

Supporting FIPA Interoperability for Legacy Multi-agent Systems.......
Christos Georgousopoulos, Omer F. Rana, Anthony Karageorgos

Dynamic Multi-agent Architecture Using Conversational
Role Delegation.ot
Denis Jouvin, Salima Hassas

Roles and Organizations

Temporal Aspects of Dynamic Role Assignment.......................
James J. Odell, H. Van Dyke Parunak, Sven Brueckner, John Sauter

From Agents to Organizations: An Organizational View
of Multi-agent Systemsttt
Jacques Ferber, Olivier Gutknecht, Fabien Michel

Modelling Multi-agent Systems with Soft Genes,
Rioles; iamd Agenlias s s s m ussis s 55055 508 55050585 5 505 5555 815 B s 65 0 8500 5 18 om0 50008
Qi Yan, XinJun Mao, Hong Zhu, ZhiChang Qi

Author Index

Using UML in the Context of Agent-Oriented Software
Engineering: State of the Art

Bernhard Bauer! and Jorg P. Miiller?

nstitute of Computer Science, University of Augsburg, D-86135 Augsburg, Germany
Bernhard.Bauer@informatik.uni-augsburg.de

2 Siemens AG, Corporate Technology, CT IC 6, D-81730 Munich, Germany
joerg.p.mueller@siemens.com

Abstract. Most of the methodologies and notations for agent-oriented software
engineering developed over the past few years are based on the Unified
Modeling Language (UML) or proposed extensions of UML. However, at the
moment an overview on the different approaches is missing. In this paper. we
present a state-of-the-art survey of the different methodologies and notations
that, in one way or the other, rely on the usage of UML for the specification of
agent-based systems. We focus on two aspects, i.e., design methodologies for
agent-oriented software engineering, and different types of notations (e.g., for
interaction protocols, social structures, or ontologies) that rely on UML. !

1 Introduction

The complexity of commercial software development processes increasingly requires
the usage of software engineering techniques, including methodologies and tools for
building, deploying, and maintaining software systems and solutions. In this context,
software methodologies play a key role. A software methodology is typically
characterized by a modeling language — used for the description of models, defining
the elements of the model together with a specific syntax (notation) and associated
semantics — and a software process — defining the development activities, the
interrelationships among the activities, and how the different activities are performed.
In particular, the software process defines phases for process and project management
as well as quality assurance. The three key phases that one is likely to find in any
software engineering process are that of analysis, design and implementation. In a
strict waterfall model these are the only phases; more recent software development
process models employ a “round trip engineering” approach, i.e., provide an iteration
of smaller granularity cycles, in which models developed in earlier phases can be
refined and adapted in later phases.

Agent technology enables the realization of complex software systems
characterized by situation awareness and intelligent behavior, a high degree of
distribution, as well as mobility support. Over the past year, agents have been very
successful from the scientific point of view; also, the beginning commercial success
of agent technology at the application level (in the sense of: intelligent components

! This paper is a short and adapted version of [42]

P. Giorgini, J.P. Miiller, J. Odell (Eds.): AOSE 2003, LNCS 2935, pp. 1-24, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 B. Bauer and J.P. Miiller

supporting intelligent applications, see e.g., [44]) is evident today. However, the
potential role of agent technology as a new paradigm for software engineering has not
yet met with broad acceptance in industrial and commercial settings. We claim that
the main reason for this is the lack of accepted methods for software development
depending on widely standardized representations of artifacts supporting all phases of
the software lifecycle. In particular, these standardized representations are needed by
tool developers to provide commercial quality tools that mainstream software
engineering departments need for industrial agent systems development.

Currently, most industrial methodologies are based on the Object Management
Group’s (OMG) Unified Modeling Language (UML) accompanied by process
frameworks such as the Rational Unified Process (RUP), see [28] for details. The
Model-Driven Architecture (MDA [40]) from the OMG allows a cascade if code
generations from high-level models (platform independent model) via platform
dependent models to directly executable code (e.g., see the tool offered by Kennedy
Carter [39]).

Thus, one possibility to provide an answer regarding the state-of-the-art in agent-
oriented software engineering is to look at the level of support currently provided for
UML technologies by recent agent-based engineering approaches. In this paper we
will provide a detailed survey of methodologies and notations for agent-based
engineering of software systems based on UML.

In Section 2 we will have a closer look at different methodologies for designing
agent-based systems. In Section 3 focuses on notations based on UML. In particular,
we shall look at notations for interaction protocols, social structures, agent classes,
ontologies, and goals and plans. The paper concludes with a summary and an outlook
for further research in Section 4.

2 Methodologies

In this we will take a closer look at agent methodologies that directly extend object-
oriented — UML approaches. In the next section we will also give an overview of
UML notations and extensions available for the specification of agent-based systems.
Since most of the notations use graphical representations of software artifacts we will
use examples taken from the original research papers.

2.1 Agent Modeling Techniques for Systems of BDI Agents

One of the first methodologies for the development of BDI agents based on OO
technologies was presented in [2][3][4][5]. The agent methodology distinguishes
between the external viewpoint - the system is decomposed into agents, modeled as
complex objects characterized by their purpose, their responsibilities, the services
they perform, the information they require and maintain, and their external
interactions - and the internal viewpoint - the elements required by a particular agent
architecture must be modeled for each agent, i.e. an agent's beliefs, goals, and plans.
For each of these views different models are described (based on [2] and [5]):

The external view is characterized by two models which are largely independent of
the underlying BDI architecture:

Using UML in the Context of Agent-Oriented Software Engineering: State of the Art 3

Agent Model: This model describes the hierarchical relationship among different
abstract and concrete agent classes (Agent Class Model) similar to a UML class
diagram denoting both abstract and concrete (instantiable) agent classes, inheritance
and aggregation as well as predefined reserved attributes, e.g., each class may have
associated belief, goal, and plan models; and identifies the agent instances which may
exist within the system, their multiplicity, and when they come into existence (Agent
Instance Model) with the possibility to define initial-belief-state and initial-goal-state
attributes.

Interaction Model: describes the responsibilities of an agent class, the services it
provides, associated interactions, and control relationships between agent classes.
This includes the syntax and semantics of messages used for inter-agent
communication and communication between agents and other system components,
such as user interfaces.

BDI agents are internally viewed as having certain mental attitudes, Beliefs, Desires
and Intentions, which represent, respectively, their informational, motivational and
deliberative states. These aspects are captured, for each agent class, by the following
models.

Belief Model describes the information about the environment and internal state
that an agent of that class may hold, and the actions it may perform. The possible
beliefs of an agent and their properties, such as whether or not they may change over
time, are described by a belief set. In addition, one or more belief states - particular
instances of the belief set - may be defined and used to specify an agent's initial
mental state. The belief set is specified by a set of object diagrams which define the
domain of the beliefs of an agent class. A belief state is a set of instance diagrams
which define a particular instance of the belief set. Formally, defined by a set of typed
predicates whose arguments are terms over a universe of predefined and user-defined
function symbols.

Goal Model describes the goals that an agent may possibly adopt, and the events to
which it can respond. It consists of a goal set which specifies the goal and event
domain and one or more goal states - sets of ground goals - used to specify an agent's
initial mental state. A goal set is, formally, a set of goal formula signatures. Each such
formula consists of a modal goal operator applied to a predicate from the belief set.

Plan Model describes the plans that an agent may possibly employ to achieve its
goals. It consists of a plan set which describes the properties and control structure of
individual plans. Plans are modeled similar to simple UML State Chart Diagrams,
which can be directly executed showing how an agent should behave to achieve a
goal or respond to an event. In contrast to UML activities may be sub-goals, denoted
by formulae from the agent's goal set; conditions are predicates from the agent's belief
set; actions include those defined in the belief set, and built-in actions. The latter
include assert and retract, which update the belief state of the agent.

2.2 Message

MESSAGE (Methodology for Engineering Systems of Software Agents) [6][7] is a
methodology which builds upon best practice methods in current software
engineering such as for instance UML for the analysis and design of agent-based
systems. It consists of (i) applicability guidelines; (ii) a modeling notation that

4 B. Bauer and J.P. Miiller

Q V L4 == _
© D o 2

Task Service Implication Assignment
4—__..__’ >
a) Interaction Resource b) Acquaintance DataFlow

Fig. 1. a) concept symbols in MESSAGE; b) relations in MESSAGE

extends UML by agent-related concepts (inspired e.g. by Gaia); and (iii) a process for
analysis and design of agent systems based on Rational unified Process. The
MESSAGE modeling notation extends UML notation by key agent-related concepts.
We describe the notation used in MESSAGE based on the example presented in [7].
For details on the example we refer to this paper. The used concept and relation
symbols are shown in Fig. 1.

The main focus of MESSAGE is on the phase of analysis of agent-based systems. For
this purpose, MESSAGE presents five analysis models, which analysts can use to
capture different aspects of an agent-based system. The models are described in terms
of sets of interrelated concepts. The five models are (following [7][6]):

Organization Model: The Organization Model captures the overall structure and
the behavior of a group of agents and the external organization working together to
reach common goals. In particular, it represents the responsibilities and authorities
with respect to entities such as processes, information, and resources and the structure
of the organization in terms of sub-organization such as departments, divisions,
sections, etc. expressed through power relationships (e.g. superior-subordinate
relationships). Moreover it provides the social view characterizing the overall
behavior of the group, whereas the agent model covers the individual view dealing
with the behavior of agents to achieve common/social goals. It offers software
designers a useful abstraction for understanding the overall structure of the multi-
agent system, what the agents are, what resources are involved, what the role of each
agent is, what their responsibilities are, which tasks are achieved individually and
which achieved through co-operation. Different types of organization diagrams are
available in MESSAGE to support the graphical representation of social concepts (see
Fig. 2).

Retrieves
documentation

o Fquipment
. | [ene]
by L]

Stores reports Instalis mainkains

Fig. 2. Examples of organization diagrams: a) structural relationships, b) acquaintance
relationships (analysis phase 0 and 1)

