

Exercise Physiology

Theory and Application to Fitness and Performance

Scott K. Powers

University of Florida

Edward T. Howley

University of Tennessee-Knoxville

EXERCISE PHYSIOLOGY: THEORY AND APPLICATION TO FITNESS AND PERFORMANCE, FOURTH EDITION

Published by McGraw-Hill, an imprint of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York, NY 10020. Copyright © 2001, 1997, 1994, 1990 by The McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

34567890 VNH/VNH 098765432

ISBN 0-07-235551-4 ISBN 0-07-118085-0 (ISE)

Vice president and editor-in-chief: Kevin T. Kane
Executive editor: Vicki Malinee
Developmental editor: Carlotta Seely
Senior marketing manager: Pamela S. Cooper
Project manager: Joyce Watters
Associate media producer: Judi David
Production supervisor: Enboge Chong
Coordinator of freelance design: Rick D. Noel
Cover/interior designer: Christopher Reese
Cover image: © Tony Stone Images, "Runner in Desert" by Lori Adamski Peek
Photo research coordinator: John C. Leland
Photo research: Mary Reeg Photo Research
Supplement coordinator: Tammy Juran
Compositor: Shepherd, Inc.
Typeface: 10/12 Novarese

The credits section for this book begins on page 523 and is considered an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data

Powers, Scott K. (Scott Kline), 1950-

Exercise physiology: theory and application to fitness and performance / Scott K. Powers, Edward T. Howley. — 4th ed.

p. cm.

Includes index.

ISBN 0-07-235551-4

Printer: Von Hoffmann Press, Inc.

1. Exercise—Physiological aspects. I. Howley, Edward T., 1943— . II. Title.

QP301 .P64 2001 612'.044—dc21

00-032865 CIP

INTERNATIONAL EDITION ISBN 0-07-118085-0

Copyright © 2001. Exclusive rights by The McGraw-Hill Companies, Inc., for manufacture and export. This book cannot be re-exported from the country to which it is sold by McGraw-Hill. The International Edition is not available in North America.

Preface

imilar to previous editions, the fourth edition of Exercise Physiology: Theory and Application to Fitness and Performance is intended for students of exercise science, clinical exercise physiology, physical education, sport physiology, athletic training and sports medicine, and physical therapy. The goal of this text is to provide the student with an up-to-date understanding of the physiology of exercise. In addition, the book contains extensive practical applications, including work tests to evaluate cardiorespiratory fitness and information on exercise training for improvements in health-related fitness and sports performance.

This book is intended for a one-semester, upper-level undergraduate or beginning graduate exercise physiology course. Clearly, the text contains more material than can be covered during a typical fifteen-week semester. This is by design. The book was written to be comprehensive in order to afford instructors a large degree of freedom to select the material that they consider most important for the makeup of their class.

New to This Edition

The fourth edition of this book has undergone extensive revision. The major changes include:

- The new edition applies exercise physiology to sports performance and conditioning in The Winning Edge boxes, helping students better understand pragmatic applications of the field.
- Links exercise physiology to health-related fitness and rehabilitation concerns through Clinical Applications boxes.
- Includes up-to-date information on the effects of creatine supplementation on performance and lean body mass and other new developments in the use of ergogenic aids in sports performance in chapters 3 and 25.
- Offers the most current information on the effects of physical activity on health in chapter 16.

- Provides the latest research on the effects of endurance exercise training on skeletal muscle fiber types in chapter 8.
- Looks at new information on the role of diet composition on "syndrome x," diet supplements, drugs and weight loss, and fad diets and weight loss in chapter 18.
- Discusses the most up-to-date information on physical activity and health utilizing information contained in the Surgeon General's Report in chapter 16.
- Considers updates on resistance training from both a physiological and health-related perspective.

Contents and Organization

All topics in exercise physiology addressed within this text are presented in a contemporary fashion supported by up-to-date references. The text is divided into three sections: (1) Physiology of Exercise, (2) Physiology of Health and Fitness, and (3) Physiology of Performance. Section one (Physiology of Exercise) contains 13 chapters that provide the necessary background for the beginning student of exercise physiology to understand the role of the major organ systems of the body in maintaining homeostasis during exercise. Indeed, a major theme in section one is that almost all organ systems work to help maintain a relatively stable internal environment during exercise. Also included in section one are chapters covering an overview of biological control systems, bioenergetics, exercise metabolism, endocrine function during exercise, techniques for measurement of work, power, and energy expenditure, neuromuscular function during exercise, cardiopulmonary responses to exercise, acid-base regulation during exercise, temperature regulation, and the effects of endurance training on various organ systems.

The chapters in the first section provide an upto-date presentation of exercise physiology without consideration as to how that information is applied to fitness or performance. The purpose of the second and third sections of the text is to address these concerns. These least two sections distinguish between exercise programs that are appropriate for attainment of health-related fitness goals versus those needed to realize world-class or individual maximal performance goals. Section two of the text (Physiology of Health and Fitness) contains five chapters dealing with health-related fitness: (1) factors that limit health and fitness, (2) work tests used to evaluate cardiorespiratory fitness, (3) training methods for fitness, (4) exercise concerns for special populations, (5) body composition and nutritional concerns for health.

Section three includes seven chapters dealing with the physiology of performance: (1) factors affecting performance, (2) work tests to evaluate performance, (3) training techniques for improvement of performance, (4) training concerns for special populations, (5) nutrition, body composition, performance, (6) environmental influences on performance, and (7) ergogenic aids. A unique aspect of sections two and three of the book is the inclusion of two chapters on exercise training for special populations. These chapters include discussions of exercise for women, asthmatics, diabetics, and the elderly.

Writing Style

The concepts in this text are presented in a simple and straightforward style. Illustrations and examples are commonly used to clarify or further explain a concept. Technical terms are defined as they are presented, highlighted in a box at the point-of-use, and are also organized in a glossary at the end of the book.

End of Book

Appendices

Exercise Physiology: Theory and Application for Fitness and Performance includes seven appendices that are valuable resources for the student. These include (1) Calculations of oxygen uptake and carbon dioxide production; (2) Estimated energy expenditure during selected activities; (3) Physical activity prescriptions; (4) Recommended dietary allowances for vitamins and minerals; (5) Estimated safe and adequate intakes; (6) Recommended energy intake;

and (7) Estimate of percent body fat from skinfold measurements.

Glossary

The end of book glossary is a helpful study aid, which provides quick access to the definitions of all the key terms.

Other Supplements

Computerized Test

The test bank software provides a unique combination of user-friendly aids that enable the instructor to select, edit, delete, or add questions, as well as construct and print tests and answer keys. The computerized test bank package is available for IBM Windows and Macintosh computers.

Exercise Physiology Videolabs

These videolabs show clear and complete demonstrations of common lab experiments to support students with limited access to labs. Also included is an Instructor's Guide which provides guidance on using the videolabs, and a **Student Video Manual** that reinforces concepts through worksheets and activities. This manual is available for student purchase.

McGraw-Hill's Exercise Physiology Supersite

The Exercise Physiology Supersite provides a wide array of information for instructors and students, from text information to the latest technology. It included professional organization, convention, and career information. Visit the website at

www.mhhe.com/hper/physed/exercisephys

Additional features of the supersite include: Up Close and Personal This link identifies who works on the exercise physiology list at McGraw-Hill, which conventions we attend, how to become a reviewer, and how to submit a book proposal.

By the Book To log onto the Powers/Howley Exercise Physiology: Theory and Application to Fitness and Performance home page, go www.mhhe.com/hper/physed/exercisephys

Personalize Your Course This includes sample simulations, journal articles, and additional features to assist in preparing for the profession of exercise physiology.

Especially McGraw-Hill This links to other resources McGraw-Hill has to offer.

Guided Tour

As an aid to help students study and learn the material within Exercise

Physiology the following pedagogical devices are included in the text:

Learning Objectives

Each chapter begins with a list of learning objectives. Guided by these objectives, students know what material to focus their attention on as they explore each chapter.

Outline of Topics

This provides students with a mental framework for organizing chapter topics; title page references help students locate topics quickly as they prepare for class and review for exams.

Key Terms

Key terms are highlighted when they are first introduced and defined in the text. The visual emphasis makes the terms easy to locate.

In Summary

At the end of major sections throughout the text, students are given a summary of the important ideas presented in the section. These summaries ensure that students grasp the key concepts and immediately reinforce the main ideas.

The Winning Edge

Exercise Physiology Applied to Sports

Do Nasal Strips Improve Athletic Performance? The use of Breathe Right nasal strips (band-aid-like devices placed over the bridge of the nose) during athfetic competition has become a common aight on athletic fields. These devices began to gain popularity in 1995 when professional football players started to use them during televised games. What are the physiological effects of these nasal strips, and can these devices (mprove athletic performance?

The purpose of these nasal strips is to hold the nostrils open and therefore reduce nasal airway

resistance: this would theoretically increase airflow to the lungs initially, these devices were developed to help people with obstructive sleep apnea (i.e., stoppage of breathing)

While limited claims have been made by the manufacturer indicating that these devices improve athletic performance, some coaches and athletes believe that these devices improve athletic performance by Improving airflow to the lungs and increasing oxygen delivery to the working muscles. However, to date. there is no convincing evidence that these devices increase pulmonary ventilation during exercise and that

performance is improved during either seroble or anaeroble athletic events. See Thomas et al. (1998) and Trocchio et al. (1995) in the Suggested Readings list for details.

While it does not appear that these nasal strips provide a physiological benefit to the athlete, the potential psychological effect of using these strips is unknown If using these nasal strips provides the athlete with the psychological advantage of believing that he or she can breathe easier, it seems likely that athletes will continue to use these devices in hopes of gaining an edge on their competitors

study questions

- What is the primary function of the pulmonary.
- system? What secondary functions does it serve? List and discuss the major anatomical components of the respiratory system.
- 3 What muscle groups are involved in ventilation. during rest? During exercise?
- 4. What is the functional significance of the ventilationperfusion ratio? How would a high V/O ratio affect. gas exchange in the lung?
- 5 Discuss those factors that influence the rate of diffusion across the blood-gas interface in the hing-
- Graph the relationship between hemoglobin O₂. saturation and the partial pressure of Op in the blood. What is the functional significance of the shape of the O₂-hemoglobin dissociation curve? What factors affect the shape of the curve?
- 7. Discuss the modes of transportation for CO; in the blood
- Graph the ventilatory response in the transition from rest to constant-load submaximal exercise. What happens to ventilation if the exercise is prolonged and performed in a hot/humid environment? Why?
- Graph the ventilatory response to incremental exercise Label the ventilatory threshold What factor(s) might explain the ventilatory threshold? List and identify the functions of the chemoreceptors.
- that contribute to the control of breathing. 11. What neural afferents might also contribute to the
- regulation of ventilation during exercise?

12. Discuss the control of ventilation during exercise.

suggested readings

Dempsey I et al 1996 Flandbook of Physiology Exercise Section 12: Integration of motor, circulatory respiratory, and metabolic control L. Rawl and I. Sheppard. New York: Oxford University Press.

Johnson H. E. Aaron M. Babcock and J. Dempsey. 1996. Respiratory muscle fatigue during exercise Implications for performance. Medicine and Science in Sports and Exercise 28: 1129-37

Levitzky, M. 1999: Pulmonary Physiology. New York: McGraw-Hill Companies

Up-to-Date References

content of each chapter.

The current reference list is a comprehensive guide to

relevant journal articles and texts that influence the

Chapter Ten Respiration During Exercise

Powers, S., I. Coombes, and H. Demirel. 1997. Exercise. training-induced changes in respiratory muscles. Sports Medicine, 24: 120-31

Thomas, D., B. Bowdoin, D. Brown, and S. McCaw. 1998. Nasal strips and mouthpieces do not affect power output during anaerobic exercise. Research Quarterly for Exercise and Sport 69:201-4.

Trocchio M. I. Wimer A. Parkman, and J. Fischer 1995. Oxygenation and exercise performance-enhancing effects attributed to the Breathe Right nasal dilator Journal of Athletic Training 30-211-14.

207

references

 Allen, C., and N. Jones. 1984. Rate of change of. alveolar carbon dioxide and the control of ventilation during exercise. Journal of Physiology (London) 355:1-9

Study Questions

Suggested Readings

available at bookstores or public libraries.

Study questions help students check their under-

standing of the chapter content and prepare for exams.

Because students want to know more about a particu-

lar topic, a list of annotated readings is given at the

end of each chapter. These suggested readings are

- 2. Asmussen E. 1983 Control of ventilation in exercise In Exercise and Sport Science Reviews, you 2, ed. R. Terjung Philadelphia Franklin Press 3. Band, D. et al. 1980. Respiratory oscillations in
- arterial carbon dioxide tension as a signal in exercise: Nature 283:84-85
- 4. Banzett R. H. Coleridge, and J. Coleridge 1978. Pulmonary CO2 ventilatory reflex in dogs. Effective range of CO₃ and vagal cooling. Respiration Physiology
- 5. Beaver W. K. Wasserman, and B. Whipp. 1986. A new method for detecting anaerobic threshold by gas excharge: Journal of Applied Physiology 60 2020-27.
- 6. Bennett, F. 1984. A role for neutral pathways in exercise hyperpnea Journal of Applied Physiology 56:1559-64. 7. Bennett F and W Fordyce 1985 Characteristics of the ventilatory exercise stimulus. Respiration Physiology.
- 3. Bennett, F. R. Tallman, and G. Grodins, 1984. Role of VCO₂ in control of breathing in awake exercising dogs Journal of Applied Physiology 56:1335-37
- 9 Beon I W Kuhimann and M Fedde 1980 Control of respiration in the chicken. Effects of venous CO. Inaiding Respiration Physiology 39 169-81 10. Bianchi, A., M. Denavit-Saubie, and J. Champagnat.
- 1995. Central control of breathing in mammals. Neuronal circuitry, membrane properties, and neurotransmitters. Physiological Reviews 75 1-45
- 11 Bisgard, G. et al. 1982. Role of the carotid body in hyperprisa of moderate exercise in goats. Inumal of Applied Physiology 52:1216-22
- 12. Soutether, U., and P. Piwko, 1992. The respiratory system as an exercise limiting factor in normal seclentary subjects. European Journal of Applied Physiology. 64:145-52
- 13. Brice, A. et al. 1988, is the hyperprisa of muscular contractions critically dependent upon spinal afferents? Journal of Applied Physiology 64:226-33.
- Brice, A. et al. 1988. Ventilatory and PCO₃ responses. to voluntary and electrically induced leg exercise Journal of Applied Physiology 64:218-25. 15 Brown H. K. Wasserman, and B. Whipp 1976 Effect
- of beta-adrenentic blockade during exercise on ventilation and gas exchange fournal of Applied Physiology 41:886-92 16: Brown, D. et al. 1990. Ventilatory response of spinal cord-lesioned subjects to electrically induced
- exercise: Journal of Applied Physiology 68:2312-21. Busse, M., N. Maassen, and H. Konrad. 1991. Relation between plasma K* and ventilation during incremental exercise after glycogen depletion and repletion in man, Jaumai of Physiology (London) 443:469-76.
- 18. Calozzo, V et al. 1982. A comparison of gas exchange indices used to detect the anaerobic threshold Journal of Applied Physiology 53 | 184-89.
- 19 Capen R et al 1990 Distribution of pulmonary capillary transit times in recruited networks. Journal of Applied Physiology 69:473-78

- Casaburí E et al. 1977. Ventilatory and gas exchange. dynamics in response to sinusoidal work laured of Applied Physiology 42:300-11
- 21. Casaburi, R. et al. 1978. Ventilatory control characteristics of the exercise hyperpnea discerned from dynamic forcing techniques. Ched 73:280-83
- 22 Casaburi, R. et al. 1987 Mediation of reduced ventilatory response to exercise after endurance training, lournal of Applied Physiology 63: 1533-38. 23 Clanton, T. et.al. 1987. Effects of swim training on
- lung volumes and inspiratory muscle conditioning Journal of Applied Physiology 52 39-46. 24 Coleridge, H., and J. Coleridge, 1995. Airway axon neffexes-where now? News in Physiological Sciences
- 10.91-96 Dejours, P 1964. Control of respiration in muscular exercise. In Handbook of Physiology, section 3. ed W Fenn Washington American Physiological Society
- Dempsey, L. 1986. Is the Jung built for exercise? Medicine and Science in Sports and Exercise 18 143-55. 27 Dempsey, Let al. 1982. Limitation to exercise
- capacity and endurance. Pulmonary system. Canadian Journal of Applied Sports Sciences 7:4-13. 28. Dempsey, L. E. Aaron, and B. Martin, 1988. Pulmonary function during prolonged exercise. In Perspectives in Exercise and Sports Medicine Prolonged
- Eversie, ed. D. Lamb and R. Murray, 75-119 Indianapolis Benchmark Press 29 Dempsey, L. H. Forster and D. Ainsworth 1994. Regulation of hyperpnea, hyperventilation, and respiratory muscle recruitment during exercise. In
- Regulation of Breathing, ed. A. Pack and I. Dempsey. 1065-34 New York Marcel Dekker. 30 Dempsey L. and R. Fregosii 1985, Adaptability of the pulmonary system to changing metabolic
- requirements. American Journal of Cardiology 55:59D-67D. 31 Dempsey L G Mitchell and C Smith 1981 Exercise and chemoreception. American Review of Respiratury Disease 129-31-34
- Dempsey, J., S. Powers, and N. Gledhill. 1990. Cardiovascular and pulmonary adaptation to physical activity. In Exercise, Pitness, and Health: A Consensus of Current Knowledge ect C Bouchard et al., 205-16. Champaign, IL. Human Kinetics
- 33 Dempsey L E Vidruk and G Mitchell 1985 Pulmonary control systems in exercise. Update: Federation Proceedings 44:2260-70
- 34. Dempsey, Let al. 1996. Handbook of Physiology Exercise. Section 12 Integration of motor circulatory. respiratory, and metabolic control. L. Rawl and I. Sheppard. New York: Oxford University Press.
- 35. Dodd, S. et al. 1988. Effects of acute beta-adrenergic blockade on ventilation and gas exchange during the rest-to-work transition Aviation Space and Environmental Medicine 59:255-38.
- 36. Dodd. S. et al. 1989. Exercise performance following: Intense: short-term ventilatory work. International Journal of Sports Medicine 10:48-52 37. Domino, K. et al. 1991. Pulmonary blood flow and

ventilation-perfusion heterogeneity. Journal of Applied Pinjsiology 71 252-58

208

Section One Physiology of Exercise

XVII Preface

Supplements

Instructor's Manual

The instructor's manual provides a chapter-by-chapter overview of key concepts to be stressed by the instructor as well as a multiple choice test bank. The instructor's manual also provides suggestions for laboratory exercises.

Instructor's Manual and Test Bank

to accompany

EXERCISE PHYSIOLOGY (including Catalog of Images for Chapters, PowerPoint Presentations, Web Site [Windows® only], Content List, Optional Installations, and User's Guide) SYSTEM REQUIREMENTS Windows: 486/DX33 or better, VISUAL RAM or greater, 5 MB hard drive space, 640x460x256 color monitor, CD-ROM drive (transfer) RESOURCE rate of 300 kbs or greater) SoundBlaster compatible audio LIBRARY 2.0 Macintosh: 68030 or better, System 7.1 or newer, 32 MB RAM or greater, 5 MB hard drive space, 640x480x256 color monitor, CD-ROM drive, mouse ISBN 0-07-242498-2 Copyright © 2001 McGraw-Hill Companies, Inc. All rights reserved.

Exercise Physiology Visual Resource Library 3.0

A CD-ROM of approximately 600 carefully selected images and lecture content slides allows instructors to create their own unique presentations by directly importing into any graphics or multimedia application, as well as making slides, Powerpoint presentations, or overhead transparencies. Organized by title, subject, and key word search for convenience of use. Available to qualified adopters.

Book-Specific Web Site

The new book-specific website is a special, new ancillary that allows instructors and students to get book-specific resources on the Web. Instructors and students can access updated and new informational boxes that correspond to the pedagogy in the text, such as the box "A Closer Look." Additionally, the box on the Web, "Research Focus," is broken into two subject areas: clinical applications and application to sport. Instructors will also find downloadable ancillaries such as the instructor's manual and lecture-ready Powerpoint presentations complete with the text's figures and tables.

PowerPoints

Back

Local vibranii

Chapter 11 Chapter 16 Chapter 21

Chapter 13 Chapter 18 Chapter 23

Chapter 14 Chapter 19 Chapter 24

Chapter 17 Chapter 22

- 8 X

+ Pla Links **

Se Local estanet

IF Done

Acknowledgments

A text like Exercise Physiology: Theory and Application to Fitness and Performance is not the effort of two authors, but represents the contributions of hundreds of scientists throughout the world. While it is not possible to acknowledge every contributor to this work, we would like to recognize the following scientists who have greatly influenced our thinking, careers, and lives in general: Drs. Bruno Balke, Ralph Beadle, Ronald Byrd, Jerome Dempsey, Stephen Dodd, H. V. Forster, B. D. Franks, Steven Horvath, Henry Montoye, Francis Nagle, Michael Pollock, Robert N. Singer, and Hugh G. Welch. Additional thanks is due to the following scholars who reviewed this and earlier editions of this book and offered comments for improvement that we trust they will recognize:

Phillip A. Bishop
University of Alabama

William Floyd
University of Wisconsin-LaCrosse

Robert Grueninger

Eastern Montana College

Craig G. Johnson St. Mary's College

James H. Johnson Smith College

Martin W. Johnson

Mayville State University

Francis J. Nagle
University of Wisconsin-Madison

Roberta L. Pohlman
Wright State University

Phil Watts
Northern Michigan University

Robert Staron
Ohio University

Greg Cartee
University of Wisconsin

Additionally, we would like to extend thanks to the following people who provided insightful comments to the current edition of Exercise Physiology: Theory and Application to Fitness and Performance:

Kent Adams, Ph.D.

University of Louisville

Khalid W. Bibi, Ph.D. Canisius College

Rodney Bowden, Ph.D.

Stephen F. Austin State University

N. Kay Covington, Ph.D.

Southern Illinois University—Edwardsville

Ellen Glickman-Weiss, Ph.D. Kent State University

Connie Mier, Ph.D.

Barry University

David Pascoe, Ph.D.

Auburn University

Brief Contents

SECTION

Physiology of Exercise

1	Physiology	of Exercise	in	the United	d States—
	Its Past, Its	Future 3			

- 2 Control of the Internal Environment 13
- 3 Bioenergetics 22
- 4 Exercise Metabolism 47
- 5 Hormonal Responses to Exercise 66
- 6 Measurement of Work, Power, and Energy Expenditure 98
- 7 The Nervous System
 Structure and Control of Movement 111
- 8 Skeletal Muscle
 Structure and Function 129
- 9 Circulatory Adaptations to Exercise 157
- 10 Respiration During Exercise 183
- 11 Acid-Base Balance During Exercise 211
- 12 Temperature Regulation 220
- 13 The Physiology of Training
 Effect on VO₂ Max, Performance, Homeostasis, and Strength 236

Physiology of Health and Fitness

- 14 Patterns in Health and Disease Epidemiology and Physiology 263
- 15 Work Tests to Evaluate Cardiorespiratory Fitness 273
- 16 Exercise Prescriptions for Health and Fitness 293
- 17 Exercise for Special Populations 308
- 18 Body Composition and Nutrition for Health 328

SECTION

Physiology of Performance

- 19 Factors Affecting Performance 375
- 20 Work Tests to Evaluate Performance 386
- 21 Training for Performance 406
- Training for the Female Athlete, Children, and Special Populations 426
- 23 Nutrition, Body Composition, and Performance 437
- 24 Exercise and the Environment 457
- 25 Ergogenic Aids 479

Contents

Preface

Fuels for Exercise 28

SECTION

Physiology of Exercise

CHAPTER

Physiology of Exercise in the United States-Its Past, Its Future 3

European Heritage 3 Harvard Fatigue Laboratory 4 Physical Fitness 5 Physical Education to Exercise Science 7 Graduate Study and Research in the Physiology of Exercise 8 Professional Societies and Research Journals 9 Translation of Exercise Physiology to the Consumer 10

CHAPTER

Control of the Internal Environment

Homeostasis: Dynamic Constancy 14 Control Systems of the Body 15 Nature of the Control Systems 15 Negative Feedback 15 Gain of a Control System 16 Examples of Homeostatic Control 16 Regulation of Arterial Blood Pressure 17 Regulation of Blood Glucose 17

of Cellular Homeostasis 17 Exercise: A Test of Homeostatic Control 19

Stress Proteins Assist in the Regulation

Bioenergetics

Cell Structure 23 Biological Energy Transformation 25 Cellular Chemical Reactions 25

Carbohydrates 28 Fats 28 Proteins 29 High-Energy Phosphates 29 Bioenergetics 30 Anaerobic ATP Production 30 Aerobic ATP Production 34 Aerobic ATP Tally 40 Efficiency of Oxidative Phosphorylation 40 Control of Bioenergetics 41 Control of ATP-PC System 42 Control of Glycolysis 42

Transport Chain 42 Interaction Between Aerobic/Anaerobic ATP Production 43

Control of Krebs Cycle and Electron

CHAPTER

Exercise Metabolism

Body Fuel Sources 59

Rest-to-Exercise Transitions 48 Recovery from Exercise: Metabolic Responses 49 Metabolic Responses to Exercise: Influence of Duration and Intensity 51 Short-Term Intense Exercise 51 Prolonged Exercise 52 Incremental Exercise 52 Estimation of Fuel Utilization During Exercise 55 Factors Governing Fuel Selection 56 Exercise Intensity and Fuel Selection 56 Exercise Duration and Fuel Selection 57 Interaction of Fat/Carbohydrate Metabolism 59

Hormonal Responses to Exercise 66

Neuroendocrinology 67

Blood Hormone Concentration 68

Hormone-Receptor Interaction 69

Hormones: Regulation and Action 71

Hypothalamus and the Pituitary Gland 72

Thyroid Gland 74

Parathyroid Gland 75

Adrenal Gland 75

Pancreas 78

Testes and Ovaries 79

Hormonal Control of Substrate Mobilization During Exercise 83

Muscle-Glycogen Utilization 84

Blood Glucose Homeostasis During Exercise 85

Hormone-Substrate Interaction 92

CHAPTER

Measurement of Work, Power, and Energy Expenditure 98

Units of Measure 99

Metric System 99

SI Units 99

Work and Power Defined 99

Work 99

Power 100

Measurement of Work and Power 101

Bench Step 101

Cycle Ergometer 102

Treadmill 102

Measurement of Energy Expenditure 103

Direct Calorimetry 103

Indirect Calorimetry 103

Estimation of Energy Expenditure 105

Calculation of Exercise Efficiency 105

Factors That Influence Exercise Efficiency 107

Running Economy 108

CHAPTER

The Nervous System: Structure and Control of Movement 111

General Nervous System Functions 112

Organization of the Nervous System 112

Structure of the Neuron 113

Electrical Activity in Neurons 115

Sensory Information and Reflexes 119

Proprioceptors 119

Muscle Chemoreceptors 119

Reflexes 120

Somatic Motor Function 121

Vestibular Apparatus and Equilibrium 121

Motor Control Functions of the Brain 122

Brain Stem 122

Cerebrum 123

Cerebellum 123

Motor Functions of the Spinal Cord 124

Control of Motor Functions 124

Autonomic Nervous System 126

CHAPTER

8

Skeletal Muscle: Structure and Function 129

Structure of Skeletal Muscle 130

Neuromuscular Junction 132

Muscular Contraction 133

Overview of the Sliding Filament Model 133

Energy for Contraction 135

Regulation of Excitation-Contraction Coupling 135

Fiber Types 139

Biochemical and Contractile Characteristics of Skeletal

Muscle 139

Characteristics of Individual Fiber Types 140

Fiber Types and Performance 142

Alteration of Muscle Fiber Types by Exercise Training 142

Age-Related Changes in Skeletal Muscle 145

Muscle Actions 146

Speed of Muscle Action and Relaxation 147

Force Regulation in Muscle 148

Force-Velocity/Power-Velocity Relationships 150

Receptors in Muscle 151

Muscle Spindle 151

Golgi Tendon Organs 152

CHAPTER

Circulatory Adaptations to Exercise 157

Organization of the Circulatory System 158

Structure of the Heart 158

Pulmonary and Systemic Circuits 159

Heart: Myocardium and Cardiac Cycle 159

Myocardium 159

Cardiac Cycle 161

Arterial Blood Pressure 162

Electrical Activity of the Heart 162

Cardiac Output 166

Regulation of Heart Rate 166

Regulation of Stroke Volume 168

Hemodynamics 170

Physical Characteristics of Blood 170

Relationships Between Pressure, Resistance, and Flow 170

Sources of Vascular Resistance 172

Changes in Oxygen Delivery to Muscle During Exercise 173

Changes in Cardiac Output During Exercise 173

Changes in Arterial-Mixed Venous O2 Content During

Exercise 174

Redistribution of Blood Flow During Exercise 174 Regulation of Local Blood Flow During Exercise 174 Circulatory Responses to Exercise 176 Emotional Influence 176 Transition from Rest to Exercise Recovery from Exercise Incremental Exercise Arm versus Leg Exercise 177 Intermittent Exercise 178 Prolonged Exercise 178 Regulation of Cardiovascular Adjustments to Exercise 179 CHAPTER Respiration During Exercise Function of the Lung 184 Structure of the Respiratory System 184 Conducting Zone 185 Respiratory Zone 186 Mechanics of Breathing 187 Inspiration Expiration 188 Airway Resistance 188 Pulmonary Ventilation 190 Pulmonary Volumes and Capacities 191 Diffusion of Gases 192 Blood Flow to the Lung 193 Ventilation-Perfusion Relationships 194 O₂ and CO₂ Transport in Blood 195 Hemoglobin and O₂ Transport 195 Oxyhemoglobin Dissociation Curve 195 O₂ Transport in Muscle 197 CO₂ Transport in Blood 198 Ventilation and Acid-Base Balance 200 Ventilatory and Blood-Gas Responses to Exercise 200 Rest-to-Work Transitions 200 Prolonged Exercise in a Hot Environment 200 Incremental Exercise 201 Control of Ventilation 202 Ventilatory Regulation at Rest 202 Ventilatory Control During Submaximal Exercise 204 Ventilatory Control During Heavy Exercise 205 Does the Pulmonary System Limit Maximal Exercise Performance? 206 CHAPTER Acid-Base Balance During Exercise

Acids, Bases, and pH 212

Hydrogen Ion Production During Exercise 213

Importance of Acid-Base Regulation During Exercise 214

Acid-Base Buffer Systems 214

Intracellular Buffers 214

Extracellular Buffers 214

Respiratory Influence on Acid-Base Balance 216
Regulation of Acid-Base Balance via the Kidneys 216
Regulation of Acid-Base Balance During Exercise 216

CHAPTER

Temperature Regulation 220

Overview of Heat Balance During Exercise 221
Temperature Measurement During Exercise 222
Overview of Heat Production/Heat Loss 222

Heat Production 222

Heat Loss 223

Body's Thermostat-Hypothalamus 225

Shift in the Hypothalamic Thermostat Set Point Due to Fever 226

Thermal Events During Exercise 226

Exercise in the Heat 229

Exercise Performance in a Hot Environment 229 Gender and Age Differences in Thermoregulation 230

Heat Acclimatization 230

Loss of Acclimatization 231

Exercise in a Cold Environment 232

Cold Acclimatization 232

CHAPTER

The Physiology of Training: Effect on VO₂ Max, Performance, Homeostasis, and Strength 236

Principles of Training 237

Overload 237

Specificity 237

Research Designs to Study Training 238

Endurance Training and VO₂ Max 238

Training Programs and Changes in VO₂ Max 239

VO₂ Max: Cardiac Output and the Arteriovenous O₂ Difference 239

Stroke Volume 241

Arteriovenous O₂ Difference 242

Detraining and VO₂ Max 243

Endurance Training: Effects on Performance and

Homeostasis 243

Biochemical Adaptations and the Oxygen Deficit 245

Biochemical Adaptations and the Plasma Glucose

Concentration 246

Biochemical Adaptations and Blood pH 247

Biochemical Adaptations and Lactate Removal 248

Endurance Training: Links Between Muscle and Systemic Physiology 250

Peripheral Feedback 252

Central Command 252

Physiological Effects of Strength Training 253

Physiological Mechanisms Causing Increased Strength 253

Neural Factors 253

Muscular Enlargement 254

Simultaneous Strength and Endurance Training 255

Physiology of Health and Fitness

CHAPTER

Patterns in Health and Disease: Epidemiology and Physiology 263

Epidemiology 263

Coronary Heart Disease 266

Physical Inactivity as a Risk Factor 267

Physiology 269 Synthesis 270

CHAPTER

15

Work Tests to Evaluate Cardiorespiratory Fitness 273

Testing Procedures 274

Screening 274

Resting and Exercise Measures 276

Field Tests for Estimating CRF 276

Maximal Run Tests 276

Walk Tests 277

Canadian Home Fitness Test 278

Graded Exercise Tests: Measurements 279

Heart Rate 279

Blood Pressure 279

ECG 280

Rating of Perceived Exertion 280

Termination Criteria 280

VO₂ Max 281

Estimation of VO₂ Max from Last Work Rate 282

Estimation of VO₂ Max from Submaximal

HR Response 282

Graded Exercise Test: Protocols 283

Treadmill 285

Cycle Ergometer 286

Step Test 287

CHAPTER

Exercise Prescriptions for Health and Fitness 293

Prescription of Exercise 294

Dose-Response 295

Physical Activity and Health 295

General Guidelines for Improving Fitness 297

Screening 298

Progression 298

Warm-Up, Stretch, and Cool-Down, Stretch 298

Exercise Prescription for CRF 298

Frequency 298

Duration 298

Intensity 298

Sequence of Physical Activity 301

Walking 301

Jogging 302

Games and Sports 303

Strength Training 303

Environmental Concerns 304

CHAPTER

17

Exercise for Special Populations 308

Diabetes 309

Exercise and the Diabetic 309

Asthma 313

Causes 313

Prevention/Relief of Asthma 313

Exercise-Induced Asthma 313

Chronic Obstructive Pulmonary Disease 316

Testing and Training 316

Hypertension 317

Cardiac Rehabilitation 318

Population 318

Testing 319

Exercise Programs 319

Elderly 320

Pregnancy 321

CHAPTER

18

Body Composition and Nutrition for Health 328

Nutritional Goals 329

Standards of Nutrition 330

Classes of Nutrients 331

Water 331

Vitamins 332

Minerals 333

Carbohydrates 337

Fats 337

Protein 341

Meeting the Guidelines and Achieving the Goals 342

Food Group Plans 342

Evaluating the Diet 342

Body Composition 344

Methods of Measuring Body Composition 344

Two-Component System of Body Composition 348

Body Fatness for Health and Fitness 351

Obesity and Weight Control 352

Obesity 353

Diet, Exercise, and Weight Control 356

Energy and Nutrient Balance 356

Diet and Weight Control 358

Energy Expenditure and Weight Control 359

Physiology of Performance

CHAPTER

Factors Affecting Performance

Sites of Fatigue 376

Central Fatigue 376

Peripheral Fatigue 377

Factors Limiting All-Out Anaerobic Performances 380

Ultra Short-Term Performances (Less than Ten Seconds) 380 Short-Term Performances (10 to 180 Seconds) 381

Factors Limiting All-Out Aerobic Performances 381

Moderate-Length Performances (Three to Twenty Minutes) 381 Intermediate-Length Performances (Twenty-One to Sixty

Minutes) 382

Long-Term Performances (One to Four Hours) 382

Athlete as Machine 384

CHAPTER

Work Tests to Evaluate Performance

Laboratory Assessment of Physical Performance 387

Physiological Testing: Theory and Ethics 387

What the Athlete Gains by Physiological Testing

What Physiological Testing Will Not Do 388

Components of Effective Physiological Testing 388

Direct Testing of Maximal Aerobic Power 389

Specificity of Testing 390

Exercise Test Protocol 390

Determination of Peak VO₂ in Paraplegic Athletes 390

Laboratory Tests to Predict Endurance Performance 391

Use of the Lactate Threshold to Evaluate Performance

Measurement of Critical Power 392

Tests to Determine Exercise Economy 394

Estimating Success in Distance Running Using the Lactate

Threshold and Running Economy 394

Determination of Anaerobic Power 395

Tests of Ultra Short-Term Maximal Anaerobic Power 396

Tests of Short-Term Anaerobic Power 398

Evaluation of Muscular Strength 399

Criteria for Selection of a Strength-Testing Method 400

Isometric Measurement of Strength 400

Isotonic Measurement of Strength 401

Isokinetic Assessment of Strength 402

Variable Resistance Measurement of Strength 402

CHAPTER

Training for Performance

Training Principles 407

Overload, Specificity, and Reversibility 407

Influence of Gender, Initial Fitness Level, and Genetics

Components of a Training Session: Warm-Up, Workout,

and Cool Down 409

Training to Improve Aerobic Power

Interval Training 410

Long, Slow Distance 410

High-Intensity, Continuous Exercise 411

Injuries and Endurance Training 412

Training for Improved Anaerobic Power 412

Training to Improve the ATP-PC System 412

Training to Improve the Glycolytic System 413

Training to Improve Muscular Strength 413

Progressive Resistance Exercise 414

General Strength-Training Principles 414

Free Weights versus Machines 415

Combined Strength and Endurance Training Programs 415

Gender Differences in Response to Strength Training 416

Muscle Soreness 417

Training for Improved Flexibility 419

Year-Round Conditioning for Athletes 419

Off-Season Conditioning 419

Preseason Conditioning

In-Season Conditioning 420

Common Training Mistakes 420

CHAPTER

Training for the Female Athlete, Children, and Special Populations 426

Factors Important to Women Involved in Vigorous Training 427

Exercise and Menstrual Disorders 427

Training and Menstruation 428

The Female Athlete and Eating Disorders 428

Bone Mineral Disorders and the Female Athlete

Training During Pregnancy 429

Sports Conditioning for Children 430

Training and the Cardiopulmonary System

Training and the Musculoskeletal System 431

Competitive Training for Diabetics 432

Training for Asthmatics 433

Epilepsy and Physical Training 433

Does Exercise Promote Seizures?

Risk of Injury Due to Seizures 434

CHAPTER

Nutrition, Body Composition, and Performance 437

Nutrition and Performance 438

Carbohydrate 438

Protein 442

Water and Electrolytes 445

Minerals 448

Vitamins 448

Pregame Meal 449