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PREFACE o

BASIC CONCEPTS IN LINEAR SYSTEMS: THEORY AND EXPERIMENTS is intended to
introduce students to linear systems analysis through study and experimen-
tal verification of many fundamental linear concepts. Topics covered include
transient analysis, frequency response, summation and integration of signals,
feedback and oscillation, filtering, and modulation. Stress is placed on
mathematical formulations that encourage students to generalize their per-
ception of linear behavior and thus improve their ability to understand,
design, and predict the response of linear devices. For example, a simple
and familiar RC network is generalized and studied from the viewpoints of
its transient response, its transfer function, its frequency response, its use as
a filter, and its behavior as a lag network and as an electronic integrator.

Students are expected to have a knowledge of basic DC and AC network
analysis and of electronic (semiconductor) devices. The mathematical level
required does not include calculus, though a practical knowledge of inte-
gration would be helpful for the material on electronic integrators. An
ability to manipulate complex numbers and to use phasors in AC circuit
analysis is assumed.

The material is appropriate for a second year course in a two-year associate
degree program in electronics technology, or for a second-or third-year
course in a four-year BS degree program. All experiments have been
student tested and used successfully in an ABET accredited BS program,
where it is a prerequisite for courses in transform analysis of networks and
control systems theory.

Many of the experimental procedures have intentionally been designed to
be too long for a typical scheduled laboratory period. The intent is to
provide instructors with a degree of flexibility in their choice of assignments
and to enable the scheduling of multiple or open lab sessions if desired.
Generally speaking, the procedures toward the end of each experiment
explore more advanced applications and require somewhat more complex
computations. These can be pruned at the instructor’s discretion.

The questions at the end of each experiment generally require students to

compare their experimental results with those predicted by the theory.

Since many instructors prefer that students perform a theoretical analysis of

each network before they construct and test it in the laboratory, each

experiment contains a set of exercises that require this analysis. In many

cases these exercises duplicate some of the questions that appear after the
. experimental procedure.

This volume is the fourth in a series of teaching-laboratory manuals prepared
by the author. Some of the experiments herein have been taken from earlier



volumes and modified as necessary to suit the context of the present
volume. For a more exhaustive treatment of transients and linear network
analysis using transform methods, see LAPLACE TRANSFORMS: THEORY AND
EXPERIMENTS (Wiley, 1983). For a comprehensive coverage of operational
amplifiers and linear integrated circuits, see LINEAR INTEGRATED CIRCUITS:’
THEORY AND EXPERIMENTS (Wiley, 1983). For a study of analog and digital
computer techniques in linear systems analysis, see COMPUTER SIMULATION
OF LINEAR CIRCUITS AND SYSTEMS (Wiley, 1983).

In this, the last volume of the series, | want to express a very deep gratitude
to my wife, Becky, who encouraged and sustained me throughout the many
months these volumes were in preparation. | am also grateful to the many
students who labored diligently through the first drafts of the experiments
and made many valuable suggestions on how to improve them. Reviewers
engaged by John Wiley & Sons, Inc. also provided many valuable sugges-
tions and contributed greatly to the final product. Finally, thanks to Dr.
Howard Heiden, University of Southern Mississippi, for the departmental
support and encouragement that was given to me.

THEODORE F. BOGART, JR.
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INTRODUCTION

When describing electronic devices or systems, it is customary to use the word linear
in a somewhat loose sense to mean, simply, nondigital, Examples include audio amplifiers,
servomotors, tachometers, operational amplifiers, piezoelectric transducers, filters,
position control systems, in short, any device or combination of devices whose output is
directly proportional to its input. The equations that describe the behavior of these
devices, that is, how outputs are functionally related to inputs, are therefore linear
equations. The word continuous is also used to describe such components, though this
broader category can include devices whose equations are nonlinear. Examples are diodes,
AM and FM modulators, electronic multipliers, and function generators. In either case,
the adjectives linear and/or continuous are used when we wish to emphasize that we are re-
ferring to nondigital devices or systems. We thus exclude pulse code modulators, logic
gates, flip-flops, shift registers, digital computers, and so forth.

In this book we will study some fundamental concepts that are extremely useful for
describing and predicting the behavior of all linear devices and systems. We use the
word "system" in a very broad sense, as is customary, to include any collection of linear
devices, from simple combinations of resistive and reactive components to complex combina-
tions of amplifiers, filters, and the 1ike. "Linear systems analysis" traditionally means
the study of the properties of 1inear systems with an emphasis on mathematical character-
jzations rather than on the physical characteristics of devices themselves. That is the
perspective we will adopt in this book. We will learn how the use of mathematical equa-
tions can help us to generalize and thus better understand such concepts as transients,
frequency response, transfer functions, feedback, and filters. At the same time, we will
apply these concepts to the design, construction and experimental verification of the prop-
erties of linear electronic devices, many of whose physical characteristics may already be
familiar.

A sound knowledge of complex number theory and the use of phasors in ac circuit analysis
is required to obtain maximum benefit from the material in this book. A review of these
topics may be found in Bogart, Laplace Transforms and Control Systems Theory for Technology
(Wiley, 1982), which also contains supplemental reading on other topics that will be covered
in this book.







EXPERIMENT 1

Transients in RC and RL
Networks

.I. OBJECTIVES

1. To learn how voltages and currents in RC and RL circuits change with time when dc
voltage sources are switched into them.

2. To verify experimentally the equations that describe voltage and current changes
in RC and RL circuits.

3. To learn how to identify and distinguish between initial, transient and steady-
state currents and voltages.

4, To observe the effect of changes in circuit time-constants on the behavior of
transient voltages.

5. To learn how to use the Thevenin equivalent circuit to predict transient and steady-
state conditions in RC and RL networks.

IT. DISCUSSION

When a dc voltage source is switched into a series RC circuit, current immediately
flows from the source and begins to charge the capacitor. See Figure 1.1.

|ll+

Figure 1.1 The transient current i causes
a voltage v¢ to be developed
on the capacitor after the
switch is closed.

The capacitor voltage v¢ builds up as charge accumulates on the plates of the capacitor.
The polarity of vc is such that it opposes the applied voltage E, as shown in Figure 1.1.
As more time passes, the voltage ve increases, so the current i decreases, until
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such time as C is fully charged (v, = E volts). At that time, current ceases to flow.
During the time that the capacitor is charging, the current and voltage are said to be
transient, because only during that time are they changing. When the capacitor is fully

charged, the current and voltage are said to have reached their steady-state values.
Thus, the steady-state value of ve is E volts and the steady-state vaiue of i is zero.

The equations that describe how the voltage v and current i change with time t after
the switch is closed at t = 0 are

ve(t) = EQ1 - e HROyy (1

i(t) = £ e-t/RC g (2)

where e is the base of the natural logarithm (e =~ 2.7183). By substituting a specific
value of t into (1) or (2), we can determine the instantaneous value of ve or i at that
time. For example, suppose C = 1.0 uF and R = 500 K, and we wish to know the value of v
and i after the switch in Figure 1.1 has been closed for 0.25 seconds. Assume E = 10 vo?ts
Substituting these values into (1) and (2), we find

[ 0.25
ve(0.25) =10 [1 -e (5 x 10°)(107°)
] 0.25 0.5
-5 | = 1000 - e
=]0 'I_e . ( )
= 10(1 - .6065) = 3.94 V
0.25
i(0.25) = —9 _ e 75 = 2 x 107%¢0.5

5 x 10%

(2 x 107°)(.6065) = 12.13 WA

If we were to calculate values of v¢c and i at numerous different times t and then care-
fully plot ve(t) and i(t) versus t, we would obtain the plots shown in Figure 1.2. Note
how these p1dts reveal the steady-state values of v.(t) and i(t). At large values of time
t, ve(t) is seen to approach E = 10 volts, while i dpproaches zero. The instant that the
switch is closed, i.e. at t = 0, we see that v¢(0) = 0 and i(0) = 20 uyA. These are called
the initial values of vi(t) and i(t). We can verify the initial values by substituting
t = 0 in equations (1) and (2):

v (0)=E1 -eRG k1 -1)=0v

These initial values confirm our intuitive understanding of the behavior of the circuit in
Figure 1.1. At the instant the switch is closed, there is no voltage on the capacitor be-
cause no charge has yet accumuluted on the capacitor. It is not possible to change the
voltage across a capacitor instantaneously. Since there is no capacitor voltage present



ve(volts) i(uA)
A A
100F = = = = = = = = = - = 20.0

6.32F - — — x 12.13
i
3.8k -/ | 7.36
| |
| I
| !
1 1 ’t
25 .5 (sec)
(a)
The rise of capacitor voltage in The decay of current in Figure 1.1.
Figure 1.1
Figure 1.2

to oppose the source voltage E, the current at t = 0 must be E/R amperes.

The quantity RC in equations (1) and (2) is called the time-constant of the circuit
and has the units of time, in seconds, when R is in ohms and C is in farads. The conven-
tional symbol for a time-constant is the_Greek letter tau (T). In the previous example,
the time constant is T = RC = 5 x 105(10 ¢) = 0.5 seconds. When equations (1) and (2) are
written in terms of T they become

ve(t) = E(1-e"tT) (3)

i(t) = £ e t/T S

The significance of the time-constant is that when t = T seconds, i.e. at T seconds after
the switch is closed, we have, from (3) and (4),

ve = E(1-e¥Ty - g(1-e7!) = 632 E

i= %e't/T =Fet = 368 ER

Thus, one time-constant after the application of the source voltage E, the capacitor volt-
age has risen to 63.2% of its steady-state value, and i has decayed to 36.8% of its ini-
tial value. In a similar way, we can show that at t = 2T, v¢ = 86.5% of its steady-state
value and i = 13.5% of its initial value. Further, at t = 3T we find vc = 95% of its
final value and i = 5% of its initial value. At t = 5T the capacitor is essentially fully
charged (vec = E) and i ~ 0, so we say that steady-state conditions have been reached, for
all practical purposes, after an elapse of time equal to 5 time-constants. The student
should verify this fact, and the percentages given above, by using equations (3) and (4).



Suppose now that the voltage source in Figure 1.1 is suddenly replaced by a short-cir-
cuit, after the capacitor has been allowed to charge fully, i.e. after steady-state con-
ditions have been reached. When this happens, the charge on the capacitor flows from one
plate through the resistor R to the other plate, and thus discharges. See Figure 1.3.

Figure 1.3 Current flow when the capacitor
discharges.

Note in Figure 1.3 that the discharge current i flows in the circuit in the opposite di-
rection from that which it flowed when the capacitor was charging. If we regard the direc-
tion of charging current as positive, then the discharge current is negative. Of course,
as the capacitor discharges the voltage v decays toward zero volts and the current decays
toward zero amperes, their ultimate steady-state values. The equations that describe the
decay of voltage and current are

v.(t) = Fet/RC _ go-t/T (5)
C
‘i(t) — _%e‘t/RC= _%e-t/T (6)
These equations are plotted in Figure 1.4.
i(t)
Vc(t) 4
T
» T » t
E |
|
] .
-.368E/R | — -
.368E { - - y
| { /
I
| ~E/R /
1 ’t
T
(a) (b)
The decay of capacitor voltage during The decay of capacitor current during
discharge. discharge.

Figure 1.4



The significance of the time-constant T = RC in the discharge equations (5) and (6) is the
same as before, except of course in this case both v(t) and i(t) are decaying with time.
Both decay to 36.8% of their initial values (E and -E/R) after one time-constant, and both
reach steady-state after 5 time-constants.

Since we have an equation for i(t) when the capacitor is charging and one for i(t) when
it is discharging, we can easily derive an equation for the voltage VR across the resistor
in each of these cases. Of course the same current exists everywhere in a series circuit,
and since vg(t) = Ri(t), we find that the resistor voltage when the capacitor is charging
is

vp(t) =
and when the capacitor is discharging

VR(t) = -R .}%e-t/RC = -Ee-t/RC (8)

The plots of these equations have the same general shapes as those shown in Figure 1.4.
By Kirchhoff's voltage law, we know that the sum of the voltage drops around the circuit
of Figure 1.1 must equal the applied voltage E. This is true at every instant of time t.
We can verify this result mathematically using equations (1) and (7):

E

vr(t) + ve(t)
Fe-t/RC 4 £ (1-e~t/RC)

Ee-t/RC + E - Ee't/RC

n

E

As an exercise, verify Kirchhoff's voltage law around the circuit of Figure 1.3, when the
capacitor is discharging.

Consider now the series RL circuit shown in Figure 1.5. The switch is thrown at t = 0,
thus connecting the voltage source E to the circuit.

AT

Figure 1.5 The transient current in an
RL circuit after the switch
is closed.

It is not possible to change the current through an inductor instantaneously, that is, it
is not possible for the current to jump from its initial value of zero to some new value
the instant the switch is closed. Consequently, the current in the circuit builds up grad-
ually.



On the other hand, the voltage v| across the inductor immediately jumps to E volts when
the switch is thrown, and the polarity of this voltage opposes that of the applied voltage
source. As the current builds up, the voltage v| decays towards zero. The steady-state
values of v and i are 0 volts and E/R amperes, respectively. Under steady-state condi-
tions the inductor behaves exactly as a short-circuit. The equations that describe v| and
i as functions of time after the switch is closed are

vi(t) = Ee /LR = get/T (9)

. -t
i(t) = E YRy < f (e & -

where T = L/R seconds is the time-constant for the RL circuit.
We note that equations (9) and (10) are of the same general form as those we discussed

earlier in connection with the RC circuit. Equations (9) and (10) are plotted in Figure
1.6.

v (1) i(t)
4 7 3
& |57/ 3 O S
.632E/R | —~ — ‘
I
|
.368E | - — |
| |
I |
| |
i » t 1 » E
T T
(a) (b)
The decay of inductor voltage in Figure The rise of inductor current in Figure
1.5. 1.5.
Figure 1.6

Note that the shape of the plot of inductor voltage resembles that of the plot of capaci-
tor current (see Figure 1.2). Also, the inductor current behaves 1ike capacitor voltage.
These similarities are to be expected when we compare the forms of equations (9) and (10)
with those of (1) and (2).

The significance of the time-constant T in the RL circuit is the same as we have pre-
viously discussed for the RC circuit, as can be seen in Figure 1.6. The voltage and cur-
rent transients again have a duration which for all practical purposes equals 5 time-con-
stants. Note that large values of R reduce the time-constant in an RL circuit (T = L/R),
while large values of R increase the time-constant of an RC circuit (T = RC). We frequent-
1y encounter exponential equations_for voltages and currents containing a term written in
the form e-3l, as for example, e~ 1t Note that the time constant in these cases would be
found from T = 1/a, since a=at e't/(1/a) _ e't/T
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Thus a term such as e"1t implies that the time-constant is 1/.1 = 10 seconds, while e']0 t

implies that the time-constant is 1 ms.

If the voltage source E in Figure 1.5 were suddenly replaced by a short-circuit, then
the voltage v| across L would again change instantaneously, this time to -E volts, thus
maintaining the instantaneous magnitude and direction of current. During the next 5 time-
constants the voltage v| and current i would decay exponentially towards zero. These re-
sults are evident from the decay equatiyns for the RL circuit:

vi(t) = T (11)

i(t)

E -t/T
R (12)

Note again the similarity of the forms of inductor voltage to capacitor current, and of
capacitor voltage to inductor current (see equations 5 and 6, and Figure 1.4). As an ex-
ercise, the student should derive expressions for the resistor voltage vR in Figure 1.5,
and in the case when E is replaced by a short, and verify that Kirchhoff's voltage law
holds in each case.

We often encounter RL and RC networks that contain series-parallel combinations of re-
sistors, rather than consisting simply of a single resistor in series with a capacitor or
inductor. In these situations, we can determine the circuit time-constant and predict .
voltage and current transients by finding the Thevenin equivalent circuit of the network
to which the capacitor or inductor is connected. Recall that a Thevenin equivalent cir-
cuit is found by the following process.

1. Open-circuit the terminals with respect to which the equivalent circuit is to be
found. In our case, this means simply remove the capacitor or inductor from the
circuit and leave an open in its place.

2. Find the Thevenin equivalent resistance Rry by computing the resistance seen when
looking into the open-circuited terminals with all voltage sources replaced by
short-circuits and all current sources replaced by open circuits.

3. Find the Thevenin equivalent voltage ETH by computing the voltage that appears at
the ogen-circuited terminals when all voltage and current sources have been re-
stored.

When the Thevenin equivalent circuit has been determined, the capacitor or inductor can be
restored and the circuit analyzed as a series RL or series RC circuit. Figure 1.7 shows

these circuits as they appear after a series/parallel network is replaced by its Thevenin
equivalent.

R

t=0 H t=0 RTH
g NS 2 YV

e

T o= + EqH t

BRR

(a) (b)
Figure 1.7 RC and RL networks containing series/parallel resistor combinations can be
analyzed as series circuits by using Thevenin equivalent components.
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Note that the time-constants of the circuits in Figures 1.7 (a) and (b) are T = RyyC and T
= L/Rry, respectively. Also, the steady-state capacitor voltage in 1.7 (a) is ETy, while
the steady-state current in 1.7 (b) is Eyy/Rry. .

To illustrate the use of a Thevenin equivalent circuit in the analysis of an RC net-
work, we will determine the equations for the capacitor voltage and current after the
switch is closed in the network of Figure 1.8.

t=0

b 100K .

20V —/ 100K 1 = \
uF [ C

Figure 1.8 An RC network that can be analyzed
using a Thevenin equivalent circuit.

When the capacitor in Figure 1.8 is removed and the 20 V source replaced by a short-cir-
cuit, we obtain the circuit shown in Figure 1.9.

100K
AW~ 4o
100K +—Rpy
> O

Figure 1.9 The Thevenin equivalent resistance
seen by the capacitor in Figure 1.8
is 100K| | 100K = 50K.

From Figure 1.9 it is clear that the two 100 ko resistors are in parallel, and so Rry =
50 kQ. Figure 1.10 shows the circuit with the 20 V source restored.

From Figure 1.10 it is easy to see that Ery = 10 V. Therefore, the Thevenin equivalent
circuit with the capacitor restored appears as shown in Figure 1.11.

The time-constant of the circuit is T = RyyC = (5 x 10“)(10'8) =5 x 107%sec = 0.5 ms.
From equations (3) and (4), we find

= ]0(]_e't/.5 X 10-3)V

<
—
+
~
|}

O.Ze-tlcs X 10-3 mA

-—re
—~
+
-
I
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100K
+
20V — : 100K ETH
é ,,‘l

Figure 1.10 The Thevenin equivalent
voltage is (100K/200K) 20 V=10V.

t=0 R, ,=50K
TH
AN

T
OWwF=— V¢

e

Figure 1.11 The Thevenin equivalent circuit of
Figure 1.8 with the capacitor restored.

T

The steady-state values of Ve and i are 10 V and zero, respectively.

In this experiment we will investigate transients in RC and RL networks by connecting
a square wave generator to the networks. The square wave will alternate between a posi-
tive voltage and 0 volts, thus simulating the repeated closing of a switch that alternate-
ly connects a positive voltage to the network and then grounds it. In this way we can ex-
amine the transient build-up and decay of voltages on an oscilloscope. The frequency of
the square wave must be set Tow enough to allow steady-state conditions to be reached in
between each application of the positive voltage and ground. Thus the period of the square
wave will be at least 10 times the time-constant of the circuit.

ITT. EXERCISES

1. Write the equations for v.(t) and i(t) in the circuit of Figure 1.12 when a 5 volt dc
level is switched in at t™= 0 (instead of the square wave generator shown). What is
the time constant t of this circuit? Evaluate v.(t) and i(t) at t =0, t=7T, t = 0.5
ms and t = 5ms. Sketch vg(t) and i(t) versus %ime

2. Assume that the capacitor in Figure 1.12 is fully charged and that the input is
switched to zero volts at t = 0. Write the equations for vp(t) and i(t) in this case.
What is the time-constant T? Evaluate vg(t) and i(t) at t=0,t =7, t = 0.5 ms, and
t = 5ms. Sketch ve(t) and i(t) versus time t.

3. Repeat exercises 1 and 2 for the voltage vp(t) across the resistor in Figure 1.12.




