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Preface

The International Symposium on Symbolic and Algebraic Computation
is a forum for the exchange of ideas and techniques in symbolic mathematical
computation. ISSAC ’91 will be held in Bonn, Germany from July 15th to
17th, 1991. Topics of the conference include, but are not limited to:

Algorithms for symbolic mathematical computation
Languages, systems and packages

Computational geometry, group theory and number theory
Automatic theorem proving and programming

Interface of symbolics, numerics and graphics

Applications in mathematics, science and engineering
Symbolic and algebraic computation in education

O O 0O O o o o

This meeting marks the twenty fifth anniversary of the first symposium
on the subject. That first conference was organized by Jean Sammet and
sponsored by the ACM. There, 28 papers were presented and about 450
attended. Now the conference is held annually and ISSAC ’91 is sixteenth
in the series. Over the years, these meetings have used various abbreviated
names — SYMSAM, SYMSAC, EUROSAM, EUROCAM and EUROCAL
— before settling on the present name, ISSAC. A complete list and a bibli-
ography of the proceedings is included at the end of this volume.

The program for ISSAC °91 includes invited talks, research contributions,
system demonstrations and tutorials. It is a pleasure to be able to present
such an excellent caliber of invitees. Papers for the invited talks cannot be
included here but a list of speakers and titles appears before the table of
contents.

This volume contains all the contributed papers to be presented at the
meeting. Two forms of contribution were sought: full papers and application
reports. The full papers present original research in the field and form
the main body of the conference. The intent of the application reports
was to bring interesting uses of symbolic mathematical computation to the
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attention of the community. Hopefully this range of concrete examples will
be of use to those designing software and developing algorithms. In the
table of contents the full papers are marked with a filled circle, o, and the
application reports are marked with an open circle, o.

I would like to express my sincere gratitude to the members of the pro-
gram committee and the external reviewers. These individuals have provided
timely and careful reviews for an unexpectedly large number of submissions.
Without their efforts, it would have been impossible to maintain the stan-
dards of the ISSAC meeting.

A total of 233 papers were submitted for consideration: 208 as full pa-
pers and 25 as application reports. Two papers were withdrawn and one is
being presented in the form of an invited talk. The remaining contributions
were evaluated by the members of the program committee and external re-
viewers. For each paper, at least two but usually three or more reports were
obtained. At the end of the review process, 55 full papers and 9 application
reports were accepted. In addition, 14 full papers with a particularly strong
application interest were accepted on the condition that they be revised to
meet the requirements of an application report.

These papers were not formally refereed. Although the reviewers were
conscientious and in a good many cases made specific suggestions to the
authors for improvement, time did not permit the revised papers to be
recirculated for verification. It is expected that many of the papers here will
be published in an extended and more polished form in scientific journals.

While the ACM remains a sponsor of the ISSAC meetings, they are now
conducted internationally and the sponsorship is usually shared with an or-
ganization in the host country. This year, ISSAC ’91 is sponsored by the Ger-
man Gesellschaft fiir Informatik (GI) in cooperation with ACM SIGSAM,
SAME and the Gesellschaft fir Mathematik und Datenverarbeitung (GMD).

Finally, I would like to thank all authors who supported the conference
by submitting papers. Without this work there would be no meeting.

Yorktown Heights, New York Stephen M. Watt
May 1991
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Rational Function Decomposition

Richard Zippel*
Cornell University
Ithaca, NY 14853

rzQ@cs.cornell.edu

Abstract

This paper presents a polynomial time algorithm for de-
termining whether a given univariate rational function
over an arbitrary field is the composition of two rational
functions over that field, and finds them if so.

1 Introduction

The problem of determining if a function can be written
as the composition of two “smaller” functions f(z) =
g(h(z)) has been of interest for a long time. Until now,
work has focused on the univariate, polynomial ver-
sion of this problem: When can the polynomial f(x)
be written as g(h(z)), where both g(z) and h(z) are
polynomials? The original work in the symbolic com-
putation community was presented in 1976 [2], but the
algorithms, which in the worst case required exponential
time, were not published until 1985 [3]. This was soon
followed by the work of Kozen and Landau [11] who pro-
vided a polynomial time algorithm for decomposition of
polynomials over fields of characteristic zero, which did
not require factorization of polynomials. Some addi-
tional improvements and analysis of the positive char-
acteristic case where then presented by von zur Gathen
[23, 21, 22]. A number of other papers have since been
published on different extensions and variations of this
problem [1, 7, 5, 4].

All of these results deal with polynomial decompo-
sition. The generalization to rational functions, which
has significantly wider applicability, appears to be a far

*This research was supported in part by the Advanced Re-
search Projects Agency of the Department of Defense under Office
ol Naval Research Contract NOOO14-88-K-0591, the National Sci-
ence Foundation through grant TRT-9006137, the Office of Naval
Research through contract NOOO14-89-J-1946 and in part by the
U.S. Army Research Office through the Mathematical Science Tn-
stitute of Cornell University.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1991 ACM 0-89791-437-6/91/0006/0001...$1.50

harder problem. Notice that in the polynomial case,
the degree of ¢ and h must divide the degree of f. This
limits the number of different polynomials that must be
considered and even allows one to solve the problem by
looking for solutions of non-linecar algebraic equations
(admittedly in exponential time). When f, ¢ and h
are rational functions, there is no immediately obvious
bound on the degrees of the numerators of g and h, since
the numerator and denominator of g(h(z)) could have
a common factor. In fact, no such common factor can
arise, as we prove below.

Furthermore, we demonstrate that in the rational
function case, g and h can be determined from f in poly-
nomial time. This algorithm is valid even if the charac-
tertistic of the field is positive, which for the polynomial
case is not a completely resolved problem. One other
difference between our approach and other approaches,
is that in this paper we obtain a decomposition over the
field of definition of f(z). Thus we may fail to find ra-
tional function decompositions that exist over algebraic
extensions. Such issues do not arise for the correspond-
ing problem of polynomials over a field of characteristic
zero, but do for polynomials over fields of finite charac-
teristic.

Section 2 provides some general background material.
In Section 3 we present the new algorithms for rational
function decomposition. Finally, we comment on previ-
ous work in and give some conclusions in Section 4.

2 Preliminaries

Let f(x) be a rational function in x with coefficients in
a field k. We extend the notion of degree of a polyno-
mial by defining the degree of f(z), denoted by deg f, to
be the maximum of the polynomial degrees of the (rel-
atively prime) numerator and denominator of f. The
degree of the field k(x) over k(f(x)) is the degree of f,
if f is a polynomial. This remains true even if f is a
rational function, as shown by the following proposition.

Proposition 1 Let k(z) be an cxtension of the field
k(f(x)) where f(x) is a rational function of degree n.
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k(f(z)) =— k(9(v))
Figure 1: Fields involved in decomposition

Then [k(z):k(f(z))] = n.

Proof: Denote the numerator of f(z) by p(z) and
the denominator by ¢(z). We can instead consider the
isomorphic fields k(y) = k(f(z)) and

k(y)[x]/(p(x) — yq(z)) = k().

P(z,y) = p(x) — yq(z) is primitive as a polynomial in
y since p(x) and ¢(x) are relatively prime. Since it is
linear in y it is irreducible. Therefore, the degree of x
over the field k(y) is

deg, P(z,y) = max(deg p, degq) = deg f.

O

Let f(x) = g(h(z)) be a rational function decompo-
sition over a field k. The following proposition provides
bounds on the degrees of g(z) and h(z) in terms of the
degree of f(z). In principle, this result gives an al-
gorithm for rational function decomposition, albeit an
exponential time algorithm.

Proposition 2 Assume f(z), g(z) and h(z) are cle-
ments of k(z) such that f(x) = g(h(x)). Then

deg f = (degg) - (deg h)

Proof:

Consider the fields shown in Figure 1. The degrees
of the extensions are [k(x): k(h(z))] = degh, [k(z)
k(f(x))] = deg f and [k(y):k(g(y))] = degg. k(h(x)) is

an algebraic extension of k(f(z)) inside k(x). Thus,

deg f = [k(z ()]
= [k(z (2))] - [k(h(x)):k(f(2))]
= [k( r) k(h(x))]- [k(u) k(g(y))]
= (deg h) - (deg g),

using Proposition 1. O

A function that is the ratio of to linear polynomials
is called a fractional linear function, viz.

A(z) = (az + b)/(cz + d).

Fractional linear functions have degree 1. If two fields
k(fi1(z)) and k(f2(x)) are isomorphic then there exist
rational functions such that

fi(x) = Ri(f2(z))
f2(z) = Ra(f1(2)) = Ro(Ri(fa(x)))

By Proposition 2 (deg R;)-(deg R2) = 1 and R; and R,
must be fractional linear functions.

We say that two rational functions are linearly equiv-
alent if there exists fractional linear functions A\; and A;
such that

f() = Mi(g(ra())).

Two decompositions (polynomial or rational function)

f=g10g20---0gp
=hyohyo---0h,

are said to be equivalent if m = n and g¢; is linearly
equivalent to h;.

The link between field structure and function de-
composition comes from Liroth’s theorem, which was
proven by Liiroth [15] for £ = C and by Steinitz in gen-
cral [18].

Proposition 3 (Liiroth) If k G K C k(z) then K =
k(g(x)) where g(x) is a rational function in & over k.

An clementary proof of Liiroth’s theorem may be
found in van der Waerden [20]. An effective proof ap-
pears in Weber [24] §124, and in English in Schinzel
[17].

The key insight in studying functional decomposition
is the following corollary of Liiroth’s theorem.

Proposition 4 Let k be an arbitrary field and f(x) a
rational function over k. There is a one to one corre-
spondence between the lattice of subfields between k(x)
and k(f(x)) and the rational function decompositions of
f(x) up to equivalence.

Proof: If f(z) has a nontrivial decomposition f(x) =
g(h(x)), then k(h(z)) will be an intermediate field be-
tween k(z) and k(f(z)). Conversely, if K is field inter-
mediate between k(z) and k(f(z)) then it must be of
the form k(h(z)), where h(z) is a rational function in
z. k(h(x)) is canonically isomorphic to k(y) as shown
in Figure 1, where ¢p(y) — h(z). k(f(zx)) is interme-
diate between k(y) = k(h(z)) and k, so by Liiroth’s
theorem, there is a rational function g(y) such that
k(f(x)) = k(g9(y)). Thus f(x) is linearly equivalent to

g(h(z)). O

The following two propositions follow from Proposi-
tion 2 and are quite useful.



Proposition 5 Let k be an arbitrary field and g; and
g2 relatively prime elements of k[z]. Then for all polyno-
mials h(z) € k[z], g1(h(z)) and g2(h(z)) are relatively
prime.

Proof: Without loss of generality assume that
deg gy > degg. Define g(x) to be the ratio of g(z)
and go(x). Since g, and g; are relatively prime and
deg g1 > deg gz, degg(z) = degg;. Let

_ q1(h(z)) _ fi(x)

f(2) = o(h{@) = 0 (h=)) = Rale)’

where f; and f, are relatively prime. Thus

deg fi(z) < deg gi(h(z)) = (deg g;) - (deg h),

where equality holds if and only if g, (h(z)) and g2(h(z))
are relatively prime. Furthermore, deg f; > deg f; so
deg f = deg f,. By Proposition 2

deg f(z) = (deg g) - (deg h) = (deggy) - (deg h)

so deg fi(z) = (deggi) - (degh) and g(h(z)) and
g2(h(z)) are relatively prime.

The argument of previous proposition applies equally
when h(z) is a rational function. In this case, it is best
to view g; and g, as bivariate homogeneous functions
of the same degree, which gives the following result.

Proposition 6 Let g, and g2 be relatively prime, ho-
mogeneous polynomials in two variables. If hy and h,
are also relatively prime polynomials, then gi(hy, hy)
and ga2(h1, he) are also relatively prime.

Notice that the requirement that g; and g5 be homo-
geneous is necessary as the following example shows:

gi(z,y) =z +1
g2(z,y) =y —2 gi(hi,hy) =t+1
% — B
hi(t) =t g2(h1, hy) = 12 — 1
ho(t) =t* 41
As a consequence of Proposition 6, rational function
decomposition can be viewed as a coupled polynomial
decomposition problem, viz.
fi(e,y) = gi(hi(z, y), h2(x, y)),
fa(x,y) = g2(hi(z, y), ha(z, ),
where f;, g; and h; are homogeneous polynomials and

the pairs {f1, f2}, {91,92} and {hq, hs} have the same
degree.

3 Rational Function Decompo-
sition

The bounds of Proposition 2 provide significant insight
into rational function decomposition. In particular, if
the degree of f(x) is prime, then it has no non-trivial de-
composition. A simple, exponential time algorithm for
determining a decomposition can be constructed by us-
ing undetermined coefficients. Assume that deg f = rs
and we are looking for a decomposition f(x) = g(h(x)),
where degg = r and degh = s. We can write ¢ and h
in terms undetermined coefficients, e.g.

_gn(z) gor” +g1" " 4.4 g,
9a(x) g1 @+ Grg2r" T g

g(x)

There are 2r + 2 undetermined coefficients in g(x) and
2s+2in h(z). By Proposition 6, we can treat the numer-
ator and denominator of f(z) independently. Equating
the coefficients of ' in the following equations gives a
system of 2rs + 2 algebraic equations in the g; and h;.

Jox™ + -+ frs
= gohn(2)" + -+ grha(x)"
frs+l4’7rs —+ -+ f‘er+l

=grpr1hn(2)" + -+ garprha(z)”
Any decomposition of f(x) is a solution to this system
of equations. Conversely, any solution to this system for
which degg = » and degh = s gives a decomposition
of f(x). However, this approach is not very efficient.
Nonetheless, it does demonstrate the existence of an
algorithm.

The efficient techniques that have been developed all
tend to be divided into two phases, computing h(x) and
then given h(x) computing g(z). (The hard part, is find-
ing h(x).) We discuss the phases out of order for sim-
plicity. Determining ¢ from f and h is discussed in
Section 3.1, while the determination of h is discussed in
Section 3.2.

3.1 Determining ¢ from f and /

The most direct way to obtain g(z) such that f(r) =
g(h(x)), when f and h are known is to explicitly solve
the linear equations for the coefficients of g(x) that arise
from (1). This approach is discussed in detail by Dicker-
son [5, 1] as “computing the left composition factor.” In
this section we present. a simple analytic technique that
relies on reversion of power series and is valid when the
coefficient field has characteristic 0.

Let A; be a fractional linear function such that f =
Af o f has a zero at 0. Define h and A, similarly. Tf
f = §oh then

f(2) = (A7 o goAn)oh(x),



k(z) Ele]/(f(a)=t)=F
k(h(z)) EB]/(h(B) —t)
k(f(x)) k(t) = E

Figure 2: Field Structure

and g(z) = (A7 ! 0goAp)(x). So without loss of generality
we can assume f(0) = h(0) = 0.
h(z) has a power series expansion of the form

h(z) = hex® + hoprzt*tt 4 ...

Using standard techniques [10] we can obtain a power
series in ¢ for x in ¢t = h(z)

w= BN =V e B g e

Replacing 2 by this power series in the power series for
f(x) we get a power series in t. If there are any frac-
tional powers then there does not exist a “left compo-
sition factor.” Compute the first 2r terms of the power
series expansion of f(h~'(z)) at 0. The (r,r) Padé ap-
proximate [16] to this power series is the only possible
candidate for g(xz). This power series technique may be
easier to program than Dickerson’s technique, and us-
ing fast power series techniques [12] it might have better
asymptotic complexity.

3.2 Determination of /

For rational function decomposition, we determine h(x)
by explicitly determining a subfield of k(z) and then
use a constructive version of Liiroth’s theorem to com-
pute a generator for the subfield. The tower of fields we
will be working with is shown in Figure 2. Note that
the fields on the same horizontal line in Figure 2 are
isomorphic. By Proposition 3 every subfield of F is of
the form k(h(z)) and there exists a rational function
g such that g(h(x)) = f(z), since k(f(x)) lies between
k(y) = k(h(x)) and k. Thus every non-trivial subfield
of F' yields a non-trivial decomposition of f(x).

To illustrate our procedure consider the following ex-

ample:
2?4+ 1 2?41
22-2)°\ 2 +2

20 + 622 +5 _ f,(x)
x4 622 4+7 fa(z)’

f(x)

Il

4

where f,, and f; are relatively prime. We want to find an
intermediate field between k(z) and k(f(z)). Our first
step is to convert these fields to a more conventional
form. If E = k(t) = k(f(x)) and E[a] = k(z) then o

satisfies the minimal polynomial
Ft,7) = fa(Z)=tfa(Z) = (t+2)Z* + (61 +6) 22+ Tt +5.
This polynomial’s factorization over E[a] is

f(8,2) = (Z—a)(Z+a)((t+2) 2% +(t+2)a +6(t+1)).
(2)
Over a proper subfield of Fla], f(t,Z) will not fac-
tor so much. In particular, over a subfield it cannot
have a linear factor. Given (2), the only possible fac-
tors of f(t,Z) over the subfield E[3] are Z — a? and
((t+2)Z% + (t+ 2)a® + 6(t + 1)). Thus E[B] must con-
tain the coefficients of these two polynomials. Tf E[3] is
the smallest subfield of E[a] for which f(¢, Z) has such
a factorization, then it must be generated by the coef-
ficients of these two polynomials. In this case we can
assume that 8 = o?, whose minimal polynomial is
h(t,Z2) = (t+2)Z2 + (6t +6)Z +7t+5.  (3)
To convert E[S] back to the form k(f(x)) we observe
that the elements of E[f3] are rational functions in 2 over
k by Liiroth’s theorem. When t is replaced by f(z), (3)
must have linear factors, viz.

j 2
h(f(z),Z) = (Z — z?) ( 3z +4)’

2x2 4+ 3

which leads to the intermediate fields k(z?) and k((32%+
4)/(22% 4 3)). These two fields are isomorphic by the
fractional linear map = — (32 +4)/(22 + 3). Using the
k(z?) as the intermediate field, we have h(z) = x2%, and
thus the irreducible decomposition:

22° 4+ 6z +5

2z + 622 +5
— o.xr .
22462+ 7 !

et 462247 -

The original decomposition is equivalent to this one

since
2?2 41 r+1 9
= oxr
2242 z+2
2?2 +1 _

222 + 62 +5 -2z + 1
= = o
22+ 6247 z—1
This basic approach is applicable to the general prob-
lem except for deciding which factors of f(t, Z) should

be recombined to generate a factorization over a sub-
field of Ela]. We could try all possible combinations of

zZ2 -2

factors of f(t, Z) until we find one that yields a proper
subfield of E[a]. However, in the worst case this would
require an exponential number of trials. Instead, we use



a version of Landau and Miller’s algorithm BLOCKS
in [14] to find a non-trivial block, which will gencrate a
proper subfield of E[a]. As pointed out by Kozen and
Landau [11], this algorithm only requires that the ex-
tension F[a]/FE be separable. Kozen and Landau may
need to examine as many as O(n'°8") non-trivial blocks
to find a decomposition. However, in our case, any non-
trivial block will give a rational function decomposition.
These techniques allow us to decide which factors of
f(t, Z) should be recombined in polynomial time.

Furthermore, observe that Trager’s polynomial time
reduction of factorization over algebraic extensions [19],
which was used by Landau to show that factoring over
algebraic number fields is polynomial time [13] is appli-
cable here also, so the factorization of f(#,7) over the
function field E[a] can be done in polynomial time.

The coefficients of such a factorization generate the
intermediate field E[J]. Since we are seeking any inter-
mediate field, a single coefficient that is not in F suffices.
The minimal polynomial of for that coefficient can be
determined using resultants and square free decomposi-
tions to give F[3]/(ps(t,3)). h(x) is then deduced from
a linear factor of ps(f(x),7), which need only be fac-
tored over k. (Factoring bivariate polynomials is poly-
nomial time by Kaltofen [9].)

It is worth commenting on the practicality of this al-
gorithm. Its dominant cost is the factorization of f(t, Z)
over k(t)[a], which is about as costly as factoring a
polynomial of degree (deg £)%. Given the practical dif-
ficulties of factoring polynomials of degree greater than
about 100, it seems that it will be very difficult to de-
termine the decomposition of f(2) if the degree of f(x)
is greater than about 10.

3.3 Characteristic p case

Determining any decomposition, as opposed to deter-
mining a decomposition with a particular degree pat-
tern over a field of characteristic p is only slightly more
difficult than the characteristic 0 case, using the tech-
nique of Section 3.2. Assume that chark = p and f(x)
is a rational function over k. The decomposition of f(x)
may no longer be unique, but Proposition 41 shows that
there is still a one to one correspondence between the
inequivalent decompositions of f(x) and the fields inter-
mediate between k(z) and k(f(x)).

Referring to Figure 2, let f(t, 7Z) be the (irreducible)
minimal polynomial of o over F. Tf j(f 7 ) is separable,
then Fla] is scparable over E and a subficld can be
computed using the techniques of the previous section.
If f(f 7)) is inseparable then it can be written as

ft, 2) = fit, 27"),

for some positive value of g. Furthermore, f is separa-
1 1 M .
ble over K. Clearly, the ficld E[a”"] lies between Fla]

k(z)

Fy = k(2f — ) \

Fs = k(2Pt")

F, = k(,,m? —x) /

Eo = k(f(z))

; y . s 33 402 |3
Figure 3: Ficld Structure for f(z) = aP +r" — pr'+1 _
PP HP 4 pptl

and F and thus a linear factor of f(f(x), 7) will give
a decomposition factor of f(wx). Since F [(r”"] is separa-
ble over E, the techniques of the previous section can
be used to find additional right decomposition factors.
Left decompositions factors can be found from the fields
E[a?"], which lie between E[a] and E[a?"]for 1 < i < .

It is worth noting that even the pathological example
suggested by Dorey and Whaples [6]

@)= o(a" +2)o0 (2 —2),

2 2 7
= (2 — 2P TP _ ol 4 2o Pt

= P HPT _ o L apTHp | rtl

is can be handled straightforwardly, since the derived
polynomial

f(st) — Zp-S_H,:' . Zp'2+p _ Zp-i*+1 + ZP+1 _¢

is separable. The ficlds associated with the two decom-
positions of f(x) are shown in Figure 3.

In the case of polynomial decomposition, notice that
f(t,7) is inseparable if and only if f(x) is a rational
function of 2. Thus the distinction made by von zur
Gathen [21, 22] between “tame™ and “wild” might more
appropriately be made on whether or not f(2) is a ra-
tional function in zP.

Note that this approach only finds some decomposi-
tion of f(x). It cannot find a prescribed one. In particu-
lar, if one is looking for a decomposition f(x) = g(h(x))
where pldegg then the extension k(z)/k(f(2)) may be
inseparable and we would thus have no algorithm for
finding intermediate fields. This problem is raised in
[22].



