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Preface

Our goal in producing this book is to provide a broad
overview of the most important approaches used in
protein- and ligand-structure-based drug design. Beyond
this we aim to illustrate how these approaches are currently
being applied in drug discovery efforts. We hope this book
will be a useful resource to practitioners in the field, as well
as a good introduction for researchers or students who are
new to the field. We believe it provides a snapshot of the
most important trends and capabilities in the application
of modeling and structural data in drug discovery.

Since the 1990s the role of structure and modeling in
drug discovery has grown enormously. There have been
remarkable scientific advances in both the experimen-
tal and computational fields that are the underpinnings
of modern drug design. For example, x-ray capabilities
have improved to the point that protein structures are
now routinely available for a wide range of protein tar-
gets. One only need look at the exponential growth of
the Protein Databank (RCSB) for evidence. Tremendous
strides have been made in all aspects of protein struc-
ture determination, including crystallization, data acquisi-
tion, and structure refinement. Modeling has made similar
gains. Recent years have brought more realistic force fields,
new and more robust free-energy methods, computational
models for absorption/distribution/metabolism/excretion
(ADME)-toxicity, faster and better docking algorithms,
automated 3D pharmacophore detection and searching,
and very-large-scale quantum calculations. When coupled
with the inexorable increase in computer power, new and
improved computational methods allow us to incorporate
modeling into the drug discovery process in ways that were
not possible just a short time ago.

In addition to improvements in methods, academic
and industrial groups have gained significant experience
in the application of these approaches to drug discov-
ery problems. Protein structures, docking, pharmacophore
searches, and the like have all become a staple of drug
discovery and are almost universally applied by large and
small pharma companies. A recent example of a new
approach that is gaining wider acceptance is fragment-
based drug design. The goal of fragment-based design is to
build up drug candidates from small low-affinity, but high-
information-content, hit structures. As such, fragment-

based design relies critically on structural, computational,
and biophysical methods to identify, characterize, and elab-
orate small low-affinity ligands.

The book is divided into three broad categories: struc-
tural biology, computational chemistry, and drug discov-
ery applications. Each section contains chapters authored
by acknowledged experts in the field. Although no book of
reasonable size can be completely comprehensive, we have
attempted to address the most significant topics in each
category, as well as some areas we see as emergent. We are
fortunate to have an introductory chapter from Professor
William Jorgensen that sets the tone for the book.

The structural biology section begins with a comprehen-
sive review of the strengths and weaknesses of x-ray crystal-
lography. This is the logical starting point for most protein-
structure-based design programs, as crystallography is
certainly the most common approach for obtaining the
three-dimensional structures of therapeutically important
proteins. This section also includes two chapters on
fragment-based drug design, including one devoted to the
important role nuclear magnetic resonance has played in
this new approach.

The computational chemistry section covers a range
of modeling techniques, including free-energy methods,
dynamics, docking and scoring, pharmacophore model-
ing, quantitative structure/activity relationships, compu-
tational ADME, and quantum methods. Each topic was
selected either because it is a commonly employed tool
in drug discovery (e.g., docking and scoring) or because
it is seen as an emerging technology that may have an
increasing role in the future (e.g., linear-scaling quantum
calculations). Taken together, these chapters provide a fairly
comprehensive overview of the computational approaches
being used in drug discovery today.

The final section on applications in drug discovery pro-
vides a few concrete examples of using the methods out-
lined in the first two sections for specific drug discovery
programs. This is the ultimate validation of any experimen-
tal or computational approach, at least with regard to drug
discovery. These examples from six diverse protein targets
are useful to the expert as examples of best practices and to
the novice as examples of what can be done. An overview
of G-protein-coupled receptor (GPCR) modeling and
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structure is of keen current interest given that this class has
historically been a rich source of drugs, and it has recently
seen a major advance in access to experimental structures.
This bodes well for the future application of structure-based
design to GPCR targets.

Finally, we must thank all the authors who generously
agreed to participate in this project for their efforts and
patience. Without them, of course, there would be no book.
We have been particularly fortunate to enlist such a talented
group of authors.
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Progress and issues for computationally guided lead

discovery and optimization

William L. Jorgensen

INTRODUCTION

Since the late 1980s there have been striking advances,
fueled by large increases in both industrial and NIH-
funded academic research, that have revolutionized drug
discovery. This period has seen the introduction of high-
throughput screening (HTS), combinatorial chemistry,
PC farms, Linux, SciFinder, structure-based design, vir-
tual screening by docking, free-energy methods, absorp-
tion/distribution/metabolism/excretion (ADME) software,
bioinformatics, routine biomolecular structure determina-
tion, structures for ion channels, G-protein-coupled recep-
tors (GPCRs) and ribosomes, structure/activity relation-
ships (SAR) obtained from nuclear magnetic resonance
(SAR by NMR), fragment-based design, gene knockouts,
proteomics, small interfering RNA (siRNA), and human
genome sequences. The result is a much-accelerated pro-
gression from identification of biomolecular target to lead
compound to clinical candidate. However, a serious con-
cern is that the dramatic increase in drug discovery abilities
and expenditures has not been paralleled by an increase in
FDA approvals of new molecular entities." High demands
for drug safety, broader and longer clinical trials, too much
HTS, too little natural products research, and effective
generic drugs for many once-pressing afflictions have all
been suggested as contributors.>* Numerous corporate
mergers and acquisitions may have also had adverse effects
on productivity through distractions of reorganization and
integration. Nevertheless, one should consider what the
success would have been in the absence of the striking tech-
nical advances. Certainly, progress with some critical and
challenging target classes such as kinases would have been
greatly diminished, and the adverse impact on many can-
cer patients would have been profound. Indeed, further
gains in the treatment and prevention of human diseases
must require even more emphasis and commitment to fun-
damental research. As in other discovery enterprises, the
answer is to drill deeper.

The topic of this volume focuses on one of the areas
in drug discovery that has seen major transformation and
progress: structure- and ligand-based design. The design
typically features small molecules that bind to a biomolec-
ular target and inhibit its function. The distinction stems

from whether a three-dimensional structure of the target is
available and used in the design process. Structure-based
design can be carried out with nothing more than the
target structure and graphics tools for building ligands in
the proposed binding site. However, additional insights
provided by evaluation of the molecular energetics for the
binding process are central to most current structure-based
design activities. Ligand-based design does not require a
target structure but rather stems from analysis of struc-
ture/activity data for compounds that have been tested in
an assay for the biological function of the target. One seeks
patterns in the assay results to suggest potential modifi-
cations of the compounds to yield enhanced activity. The
upside is that a target structure is not required; the down-
side is that substantial activity data are needed. My research
group has focused on the development and application of
improved computational methodology for structure-based
design. Some of the experiences and issues that have been
addressed are summarized in the following.

LEAD GENERATION

Both lead generation and lead optimization may be pur-
sued through joint computational and experimental stud-
ies. As summarized in Figure 1.1, our approach has evolved
to feature two pathways for lead generation, de novo
design with the ligand-growing program BOMB (Biochem-
ical and Organic Model Builder)® and virtual screening
using the docking program GLIDE.® Fragment-based design,
which involves the docking and linking together of mul-
tiple small molecules in a binding site, is another popu-
lar alternative.”® Desirable compounds resulting from de
novo design normally have to be synthesized, whereas com-
pounds from virtual screening of commercial catalogs are
typically purchased. In both cases, it is preferable to begin
with a high-resolution crystal structure for a complex of the
target protein with a ligand; though the ligand is removed,
it is advisable to start from a complex rather than an
apo structure, which may have side chains repositioned to
fill partially the binding site. An extreme example occurs
with HIV-1 reverse transcriptase (HIV-RT) for which the
allosteric binding site for nonnucleoside inhibitors (NNR-
Tls) is fully collapsed in apo structures.’
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Figure 1.1. Schematic outline for structure-based drug lead discovery
and optimization.

De Novo design with BOMB

BOMB is used to construct complete analogs by adding 0-
4 substituents to a core that has been placed in a bind-
ing site. A thorough conformational search is performed
for each analog, and the position, orientation, and dihe-
dral angles for the analog are optimized using the OPLS-AA
force field for the protein and OPLS/CMI1A for the analog.'”
The resultant conformer for each analog with the lowest
energy is evaluated with a dockinglike scoring function to
predict activity. The core may be as simple as, for exam-
ple, ammonia or benzene, or it may represent a polycyclic
framework of a lead series. For the example in Figure 1.2,
ammonia was the original core, and it was positioned to
form a hydrogen bond with the carbonyl group of Lys101.
A library of molecules is then often built using a “template”
that has been envisioned by the user to be complemen-
tary to the binding site and often to also be amenable to
straightforward synthesis. For Figure 1.2, the template was
Het-NH-34Ph-U, where Het represents a monocyclic hete-
rocycle, 34Ph is a 3- or 4-substituted phenyl group, and U is
an unsaturated hydrophobic group. The template specifies
the components that constitute the desired molecules and
the topology by which they are linked together.

PN

A0

ECs = 10,000 nM

_—

FEP-Guided
Optimization

O/\/k

| CN

LY e LY

N/)\N FEP-Guided NZ N 2
H

ECsp = 200 nM

Figure 1.2. An inhibitor built using BOMB in the NNRTI binding site of
HIV-RT.

BOMB includes a library of approximately 700 possi-
ble substituents, with code numbers from 1 to about 700,
including most common monocyclic and bicyclic heterocy-
cles and about 50 common U groups such as allyl, propar-
gyl, phenyl, phenoxy, and benzyl derivatives. They are pro-
vided as groupings by the code numbers or the user can
create a custom grouping with desired code numbers. The
groupings correspond to template components such as
Het, 5Het (just 5-membered ring heterocycles), 6Het, biHet,
U, oPhX, mPhX, pPhX, mOPhX, pSPhX, OR, NR, SR, and
C = OX. The program then builds all molecules that corre-
spond to the template. In the example, if there were 50 Het
and 20 U options, the program would build the 1,000 Het-
NH-3-Ph-U and 1,000 Het-NH-4-Ph-U possibilities. This de
novo design exercise with HIV-RT as the target resulted in
identification of Het = 2-thiazolyl and U = dimethylally-
loxy as a promising pair. Subsequent synthesis of the thi-
azole 1 in Figure 1.3 did provide a 10-pM lead in an MT-2
cell-based assay for anti-HIV activity. As described below,
the lead was optimized to multiple highly potent NNRTIs,
including the chlorotriazine in Figure 1.2 (31 nM), the corre-
sponding chloropyrimidine (10 nM), and the cyanopyrimi-
dine analog 2 (2 nM).!'-!

Some additional details should be noted. The host, typ-
ically a protein, is rigid in the BOMB optimizations except
for variation of terminal dihedral angles for side chains with

OCH, o’\)\

Optimization H
ECso=2nM

Figure 1.3. Example of a 10-M lead proposed by BOMB that was optimized to provide numerous potent anti-HIV

agents.
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Figure 1.4. Progression of a false positive from docking to potent anti-HIV agents.

hydrogen-bonding groups, for example, the OH of tyro-
sine or serine and ammonium group of lysine. The current
scoring function has been trained to reproduce experimen-
tal activity data for more than 300 complexes of HIV-RT,
COX-2, FK506 binding protein, and p38 kinase.® It yields
a correlation coefficient r* of 0.58 for the computed ver-
sus observed log(activities). The scoring function contains
only five descriptors that were obtained by linear regres-
sion, including an estimate of the analog’s octanol/water
partition coefficient from QikProp (QPlogP),'® the amount
of hydrophobic surface area for the protein that is buried
on complex formation, and an index recording mismatched
protein/analog contacts, such as a hydroxyl group in con-
tact with a methyl group. Interestingly, the most significant
descriptor is QPlogP, which alone yields a fit with an r* of
0.47. Thus, the adage that increased hydrophobicity leads
to increased binding is well supported, though it requires
refinement for quality of fit using the host/ligand interac-
tion energy or an index of mismatched contacts. Overdone,
it also leads to ADME problems, especially poor aqueous
solubility and high serum protein binding.

The results from a BOMB run include the structure
for each protein/analog complex as a Protein Data Bank
(PDB) file or BOSS/MCPRO Z-matrix (internal coordinate
representation)'® and a spreadsheet with one row for each
analog summarizing computed quantities from the BOMB
calculations, including host-analog energy components
and surface area changes as well as predicted properties for
the analog, including log P,,«, aqueous solubility, and Caco-
2 cell permeability from QixProp, which is called as a
subroutine. The processing time for Het-NH-Ph-U using
ammonia as the core is approximately 15 s per analog on
a 3-GHz Pentium IV processor. The required time increases
roughly linearly with the number of conformers that need
to be constructed. For large libraries, multiple processors
are used.

Virtual screening

The common alternative is to perform virtual screening on
available compound collections using docking software.
Many reviews and comparisons for alternative software and

scoring functions are available.®'"-?" There is no question
that there have been many successes with docking such
that, given a target structure, it is expected to be compet-
itive with and far more cost effective than HTS and is now
an important component of lead discovery programs in the
pharmaceutical industry. New success stories are reported
regularly in the literature and at conferences. However, it
is generally accepted that correct rank-ordering of com-
pounds for activity is beyond the current capabilities. This
is not surprising in view of the thermodynamic complexity
of host/ligand binding, including potential structural
changes for the host on binding, which have usually been
ignored, and the need for careful consideration of changes
in conformational free energetics between the bound and
unbound states.?!

In our experience, docking has been a valuable com-
plement to de novo design (Figure 1.1). When large com-
pound collections are docked, interesting structural motifs
often emerge as potential cores that may have been over-
looked otherwise. Our earliest docking effort started out
well, was formally a failure, and then recovered to pro-
vide an interesting lead series that yielded potent anti-HIV
agents.>** Leads were sought by processing a collection
of approximately 70,000 compounds from the Maybridge
catalog, which was supplemented with twenty known NNR-
TIs. The screening protocol began with a similarity filter
that retrieves 60% of the known actives in the top 5% of
the screened library. The approximately 2,000 library com-
pounds that were most similar to the known actives were
then docked into the 1rt4 structure of wild-type HIV-RT,
using GLIDE 3.5 with standard precision.® The top 500 com-
pounds were then redocked and scored in GLIDE extrapre-
cision (XP) mode.? The top 100 of these were postscored
with a molecular mechanics/generalized Born/surface area
(MM-GB/SA) method that was shown to provide high
correlation between predicted and observed activities for
NNRTIs.?? Though known NNRTIs were retrieved well (ten
were ranked in the top twenty), purchase and assaying of
approximately twenty high-scoring compounds from the
library failed to yield any active anti-HIV agents. Persisting,
the highest-ranked library compound, the inactive oxadia-
zoles 3 in Figure 1.4, was pursued computationally to seek
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Figure 1.5. Distributions of the Glide XP scores for the top-ranked 1,000
ZING compounds, the top-ranked 1,000 Maybridge compounds, and the
10 known tautomerase inhibitors.

constructive modifications. Specifically, the substituents
were removed to yield the anilinylbenzyloxadiazole core. A
set of small substituents was reintroduced in place of each
hydrogen using BOMB; scoring with BOMB, followed by
free-energy perturbation (FEP)-guided optimization, led to
synthesis and assaying of several polychloro analogs with
ECso values as low as 310 nM in the MT-2 HIV-infected
T-cell assay.® Further cycles of FEP-guided optimization led
to novel, very potent NNRTIs, including the oxazole deriva-
tive 4, as described more below.?!

A more recent virtual screening exercise was strikingly
successful.”> New protocols had evolved, including use of
the much larger ZINC database of approximately 2.1 mil-
lion commercially available compounds.?® The goal in this
case was to disrupt the binding of macrophage migration
inhibitory factor (MIF) to its receptor CD74, an integral
membrane protein, and a major histocompatibility com-
plex (MHC) class II chaperone. MIF is a pro-inflammatory
cytokine that is released by T-cells and macrophages. It
plays a key role in a wide range of inflammatory dis-
eases and is involved in cell proliferation and differentia-
tion and angiogenesis.?”"?® Curiously, MIF is also a keto-
enol isomerase. There is evidence that the interaction of
MIF with CD74 occurs in the vicinity of the tautomerase
active site and that MIF inhibition is directly competi-
tive with MIF/CD74 binding.?® The docking was performed
using GLIDE 4.0 and the 1ca7 crystal structure of the com-
plex of MIF with p-hydroxyphenylpyruvate.*® In addition to
the ZINC collection, the Maybridge HitFinder library was
screened, which provided an additional 24,000 compounds.
After all structures were processed using SP GLIDE, the top-
ranked 40,000 from ZINC and 1,000 from Maybridge were
redocked and rescored using GLIDE in XP mode.” GLIDE XP
scoring was also shown to provide good correlation with
experimental data for 10 known inhibitors of MIF’s tau-
tomerase activity.

A key observation from the docking is illustrated in Fig-
ure 1.5, which shows the distributions of GLIDE XP scores
for the top-ranked 1,000 compounds from ZINC, the top-
ranked 1,000 Maybridge compounds, and the ten known
MIF inhibitors. Clearly, the large ZINC collection yields
many compounds with much more promising XP scores
than the Maybridge HitFinder library. The average molec-
ular weights for the two sets of 1,000 compounds are 322 for
ZINC and 306 for Maybridge. The variation only amounts
to one additional nonhydrogen atom for the ZINC set, so
the improved performance with the ZINC collection pre-
sumably results from greater structural variety. In view of
the sensitivity of activity to structure, as reflected in Figures
1.3 and 1.4, it is highly unlikely that active compounds can
be found in small libraries like Maybridge HitFinder unless
the assays can be run with the compounds at millimolar or
higher concentrations, which is often precluded by solubil-
ity limits. Even with a viable core (Figure 1.4), the chance is
low that a small library will contain a derivative with a sub-
stituent pattern that yields an active in a typical assay.

Finally, the GLIDE poses for approximately 1,200 of the
top-ranked compounds were displayed and 34 compounds
were selected by human evaluation of the poses with input
from QixProp on predicted properties and structural lia-
bilities. The filtering included rejection of poses where
the conformation of the ligand was energetically unlikely
or where there were overly short intramolecular contacts
and compounds with generally undesirable features such
as readily hydrolizable functional groups or substructures
such as coumarins, which are promiscuous protein binders.
Only 24 of the 34 selected compounds were, in fact, avail-
able for purchase, which represents a typical ratio. Ulti-
mately 23 compounds were submitted to a protein-protein
binding assay using immobilized CD74 and biotinylated
human MIF with streptavidin-conjugated alkaline phos-
phatase processing p-nitrophenyl phosphate as substrate.
Remarkably, eleven of the compounds were found to have
inhibitory activity in the uM regime including four com-
pounds with 1Cs, values below 5 pM. Inhibition of MIF
tautomerase activity was also established for several of the
compounds with ICs, values as low as 0.5 wM. Representa-
tive active compounds are shown in Figure 1.6; optimiza-
tion of several of the lead series is being pursued. Notably,
these are the most potent small-molecule inhibitors of MIF-
CD74 binding that have been reported to date.

The first three compounds in Figure 1.6 were ranked
in 285th, 696th, and 394th place by the XP scoring, so
they were not “high in the deck.” However, prior de novo
structure building with BOMB had indicated that 6-5 fused
bicyclic cores should be promising, so the selections were
biased in this direction. The compound ranked first with XP
GLIDE was also purchased and assayed; it turned out to be
the 250-puM inhibitor in Figure 1.6. In addition, the com-
pounds ranked 26th and 32nd were purchased and found
to be inactive. Overall, it is expected that contributors to
the success with the virtual screening in this case were
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Figure 1.6. Structures and ICsq values for some inhibitors of MIF-CD74 binding discovered by virtual screening.

improvements with GLIDE 4.0 and the XP scoring, use of
the large ZINC library, the relatively small binding site and
consequently small number of rotatable bonds for potential
inhibitors, and the human filtering.

ADME ANALYSES

As indicated in Figure 1.1, as one pursues leads it is impor-
tant to be aware of potential pharmacological liabilities. The
significance of this issue became increasingly apparent in
the 1990s because of high failure rates for compounds in
clinical trials that could be ascribed to ADME and toxicity
problems.®' This led to the introduction of Lipinski’s rules
and recognition that compounds developed in the post-
HTS era frequently tended to be too large and hydropho-
bic, which is accompanied by solubility and bioavailability
deficiencies.?? In this atmosphere, more effort was placed
on quantitative prediction of molecular properties beyond
log P, using statistical procedures such as regression anal-
yses and neural networks, which were trained on experi-
mental data.’** The typical regression equation is a lin-
ear one, Equation (1.1), where the sum is over molecular
descriptors i that have values ¢; for the given structure and
the coefficients a; are determined to minimize the error
with the experimental data:

property = _ aic; + a. (1.1)

In Figure 1.1, the choice for ADME analyses is QikProp,
which was among the earliest programs to predict a
substantial array of pharmacologically relevant properties.

Version 1.0, which was released in March 2000, provided
predictions for intrinsic aqueous solubility, Caco-2 cell
permeability, and hexadecane/gas, octanol/gas, water/gas,
and octanol/water partition coefficients. The required
input for QikProp is a three-dimensional structure of an
organic molecule, and it mostly uses linear regression equa-
tions with molecular descriptors such as surface areas
and hydrogen-bond donor and acceptor counts. By ver-
sion 3.0 from 2006, the output covered eighteen quan-
tities, including log BB for brain/blood partitioning, log
Kisa for serum albumin binding, hERG K* channel block-
age, primary metabolites, and overall percentage human
oral absorption.’® The prediction of primary metabolites
is based on literature precedents and recognition of cor-
responding substructures; for example, methyl ethers and
tolyl methyl groups are typically metabolized to the alco-
hols. Execution time with QixPror is negligible because the
most time-consuming computation is for the molecule’s
surface area. Average root-mean-square (rms) errors for
most quantities are about 0.6 log unit, as in Figure 1.7.

To gauge acceptable ranges of predicted properties,
QikProp 3.0 was used to process approximately 1,700
known neutral oral drugs,'”® which were compiled by
Proudfoot.®® For submission to QikProp, the original
two-dimensional structures were converted to three-
dimensional structures and energy-minimized with BOSS
using the OPLS/CMIA force field.'”!'6 Some key results
from the analyses are summarized as histograms in Fig-
ures 1.8 and 1.9. Consistent with the log P, limit of 5 in
Lipinski’s rules,** 91% of oral drugs are found to have
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Figure 1.7. Experimental data and QikProp 3.0 results for 400-500 octanol/water partition coefficients (left) and
aqueous solubilities (right). S is aqueous solubility in moles per liter. Correlation coefficients 2 are 0.92 and 0.90
and the rms errors are 0.54 and 0.63 log unit, respectively.



William L. Jorgensen

400

300 4

No. Drugs
n
s

100

OD‘UH HDDJ

-25-15-05 05 1.5 25 35 45 55 65 7.5
QP log P

No. Drugs
n
o
o

400

300

100

0I_IHH , A m,

-8.5 -7.5-6.5 -55-4.5-35-25-15-05 05 1.5
QP log S

Figure 1.8. QikProp distributions for log Py (left) and log S (right) for 1712 oral drugs.

QPlogP values below 5.0. However, values below zero are
uncommon, presumably because of poor cell permeability,
and the “sweet” range for log P,,, appears to be 1-5. For
aqueous solubility, 90% of the QPlogS values are above —5.7,
thatis, Sis greater than 1 n.M. QPlogS values less than —6 or
greater than —1 are undesirable. The QikProp results also
state that 90% of oral drugs have cell permeabilities, Pcaco,
above 22 nm/s and no more than six primary metabolites.
These quantities and limits address important components
of bioavailablility, namely, solubility, cell permeability, and
metabolism.

For our design purposes (Figure 1.1), a compound is
viewed as potentially ADME challenged if it does not
satisfy all components of a “rule-of-three”: predicted log
S > —6, Peaco > 30 nm/s, and maximum number of pri-
mary metabolites of 6. For central nervous system (CNS)
activity requiring blood-brain barrier penetration, an
addendum is that QPlogBB should be positive. Also, some
caution is warranted for a compound with no metabolites
because of possible clearance problems.'” A further note
is that QPlogP and QPlogS are correlated with an r* of
0.68, so there would be some redundancy in invoking limits
on both. Among reasons for preferring solubility, there
are quite a few examples of relatively small drugs that
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have log P, values greater than 5 but have acceptable
solubility, for example, meclizine, prozapine, clocinizine,
bepridil, denaverine, bopindolol, phenoxybenzamine, and
terbinafine. Of course, compounds with reactive functional
groups, for example, those that are readily hydrolizable or
strongly electrophilic, are flagged by QikProp and normally
eliminated from inclusion in a lead structure. For example,
in rofecoxib (Vioxx) concern could be expressed for possi-
ble nucleophilic attack and ring opening at the furanone
carbonyl and for Michael addition to the «,3-double bond;
metabolic oxidation at the allylic methylene group is also
expected to yield the 5-hydroxy derivative (Scheme 1). For
celecoxib (Celebrex), metabolic oxidation to the benzylic
alcohol is noted by QikProp, and an “alert” is given that
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Figure 1.9. QikProp distributions for log Pcac, (left) and number of primary metabolites (right) for 1,712 oral drugs.

Pcaco is the Caco-2 cell permeability in nm/s.
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Figure 1.10. (Left) A protein/ligand complex surrounded by approximately 1,000 water molecules in a spherical
shell or “cap.” (Right) Thermodynamic cycle used to compute relative free energies of binding, A AGy. P is a host

and X and Y are two ligands.

the primary sulfonamide group can be associated with sulfa
allergies and indiscriminant metal chelation.*®

Overall, for the 1,712 oral drugs, 278 violate one or more
of the four Lipinski rules (MW < 500, logP,w <5, H-bond
donors < 5, H-bond acceptors <10) with QPlogP used for
log Po/w. There are 178, 82, and 18 oral drugs with one,
two, and three violations, respectively. The group with
two violations includes macrolides such as erythromycin
and azithromycin and some other well-known drugs like
atorvastatin, amiodarone, chloramphenicol, ketoconazole,
and telmisartan. These examples all fail one member of
the rule-of-three, either the solubility limit or number of
primary metabolites, for example, respectively, atorvastatin
and the macrolides. The group with three rule-of-five vio-
lations includes the HIV-protease inhibitors ritonavir and
saquinavir, which are known to have low bioavailability.
There are exceptions to such rules because they are based
on 90th-percentile limits. Nevertheless, in all stages of
lead generation, it would be imprudent to ignore property
distributions for known drugs such as those in Figures 1.8
and 1.9.

LEAD OPTIMIZATION

It is assumed that inhibitory potency increases with increas-
ing biomolecule-inhibitor binding. So, on the computa-
tional side, the key for lead optimization is accurate pre-
diction of biomolecule-ligand binding affinities. There are
many approaches, but the potentially most accurate ones
are the most rigorous.'” At this time, the best that is done
is to model the complexes in the presence of hundreds or
thousands of explicit water molecules using Monte Carlo
(MC) statistical mechanics or molecular dynamics meth-
ods (Figure 1.10).!7 Classical force fields'® are used, and
extensive sampling is performed for key external (transla-
tion and rotation) and internal degrees of freedom for the
complexes, solvent, and any counterions. FEP and ther-
modynamic integration (TI) calculations then provide for-

mally rigorous means to compute free-energy changes.”
For biomolecule/ligand affinities, perturbations are made
to convert one ligand to another using the thermody-
namic cycle in Figure 1.10. The conversions involve a
coupling parameter, \, that causes one molecule to be
smoothly mutated to the other by changing the force
field parameters and geometry.*® The difference in free
energies of binding for the ligands X and Y then comes from
AAGL =AGx — AGy = AGr — AG¢. Two series of muta-
tions are performed to convert X to Y unbound in water and
complexed to the biomolecule, which yield AGy and AGc.

Absolute free energies of binding are not obtained, but
for lead optimization it is sufficient to assess the effects
of making changes or additions to a core structure in the
same spirit as synthetic modifications. Though the MC or
MD plus FEP or TI calculations are rigorous, the accuracy
of the results is affected by many issues, including the use
and quality of force fields; missing energy terms, such as
instantaneous polarization effects; and possible inade-
quate configurational sampling, which may be associated
with, for example, infrequent conformational changes
that are beyond the duration of the simulations. In the
author’s experience, more approximate methods are not
accurate enough to provide satisfactory guidance in lead
optimization.

The idea of using such calculations for molecular design
goes back more than twenty years, at least to the report
of the first FEP calculation for conversion of a molecule X
to molecule Y in 1985 and to the earliest application of
FEP calculations for protein-ligand binding by Wong and
McCammon.* A final comment from McCammon’s review
on computer-aided molecular design in Sciencein 1987 was
perspicacious: “The attentive reader will have noticed that
no molecules were actually designed in the work described
here.”® The situation has remained basically unchanged
since the late 1980s. As the convergence of FEP calcula-
tions was investigated, it was apparent that they were too
computationally intensive for routine use in molecular
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Figure 1.11. MC/FEP results for A AG, (kcal/mol) established a strong preference for a single methyl group oriented
“in” toward Tyr188 in the NNRTI binding site. The precision of the calculations is reflected in the cycle’s small

hysteresis, 0.4 kcal/mol.

design given the computer resources available before ca.
2000. In 1985, the ethane-to-methanol FEP calculation in a
periodic cube with 125 water molecules required two weeks
on a Harris-80 minicomputer,* and the Wong/McCammon
MD simulation for the trypsin-benzamidine complex cov-
ered only 29 ps but was performed on a Cyber 205
“supercomputer.”??

Thus, until recently the application of FEP or TI calcu-
lations on protein-ligand systems predominantly featured
retrospective calculations to reproduce known experimen-
tal inhibition data and generally addressed small numbers
of compounds. Kollman was a strong advocate of the poten-
tial of free-energy calculations for molecular design, and
he and Merz reported a rare, prospective FEP result on the
binding of a phosphonamidate versus phospinate inhibitor
with thermolysin.*"*?> Pearlman also advanced the tech-
nology, though publications in 2001 and 2005 were still
retrospective and confined to a simple congeneric series
of 16 p38 kinase inhibitors.”** In addition, Reddy and
Erion have been steady contributors; they have used FEP
calculations to evaluate contributions of heteroatoms and
small groups to the binding of inhibitors to gain insights
on directions for improvement.*>*¢ Qur own computations
on protein/ligand binding began to appear in 1997 using
MC/FEP methodology."’*® Many issues and systems were
subsequently addressed, including substituent optimiza-
tion for celecoxib analogs,” COX-2/COX-1 selectivity,*
and heterocycle optimization for inhibitors of fatty acid
amide hydrolase.’! An additional series of publications
used MC/FEP calculations to compute the effects of HIV-
RT mutations on the activity of NNRTIs.*2-%° The latter work
included predictions for the structures of the complexes
of efavirenz and etravirine with HIV-RT, which were sub-
sequently confirmed by x-ray crystallography.®*>*%% Con-
fidence in the predicted structures came from agree-
ment between the FEP results and experimental activity
data.

FEP-guided optimization of azines as NNRTIs

With this preparation, large increases in computer
resources, the hiring of synthetic chemists, and collab-

oration with biologists, FEP-guided lead optimization
projects were initiated in 2004. Early successes in the opti-
mization of potent NNRTIs are reflected in Figures 1.2 and
1.3 for the Het-NH-3-Ph-U series.''"'* MC/FEP calculations
were used to optimize the heterocycle and the substituent
in the 4-position of the phenyl ring. The calculations are
run with MCPRO and all use the OPLS/CM 1A force field for
the ligands and OPLS-AA for the protein.'”'® This quickly
led to selection of 2-pyrimidinyl and 2-(1,3,5)-triazinyl
for the heterocycle and chlorine or a cyano group at the
4-position. These combinations yielded NNRTIs with ECs
values near 200 nM.

Extensive FEP calculations then focused on optimiza-
tion of substituents for the heterocycle.'® For the 2-
pyrimidines, the immediate question concerned whether
4,6-disubstitution would be favorable or if mono substitu-
tion at the 4- or 6-position is preferred. In complexes with
HIV-RT, the 4- and 6-positions are not equivalent; for exam-
ple, in Figure 1.2, the methoxy group could be directed
toward the viewer (“out”) or away (“in”), as shown. From
display of structures of the complexes, the preferences for
in or out were not obvious. This was clarified by MC/FEP
results, which showed a strong preference for having a sin-
gle small substituent on the pyrimidine ring and that the
substituent would be oriented “in” (Figure 1.11). Synthe-
sis of a variety of such mono-substituted pyrimidines and
triazines yielded ten NNRTIS with ECsos below 20 nM.!!-13
There was good correlation between the FEP results and the
observed activities.!"''* The methoxypyrimidine 2 in Figure
1.3 (2 nM) was the most potent, although it was also rela-
tively cytotoxic (CCsp = 230 nM). The corresponding 1,3,5-
triazine is also a potent anti-HIV agent (11 nM) and has a
large safety margin (CCsy = 42 pM).

Heterocycle scans

FEP results also established the orientation of the methoxy
methyl group in the pyrimidine and triazine derivatives
shown in Figure 1.2, that is, pointing toward Phe227 rather
than Tyr181. This suggested the possibility of cyclizing the
methoxy group back into the azine ring to form 6-5 and 6-6
fused heterocycles in the manner indicated in Scheme 2.



