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. Preface

As long as we can remember, our department has offered a one-seme¢ster,
graduate level subject in classical thermodynamics. Traditionally, it has been
applications-oriented ; one of its primary objectives has been to develop com-
petence and self-confidence in handling challenging applications in new and
sometimes unusual situations. Half to two-thirds:of the contact hours are
usually devoted to problem-solving.:Over the years, there accumulated many
interesting, challenging problems—most of which orlgmated from- our con~
sulting practice. . 4 ¢

We have used a number of texts in conjunction with our graduate subject.
None were completely satisfactory. We are convinced that a firm foundation
in theory is essential for students who will be asked to fulfill the needs:of
tomorrow with an increasing demand for talents which are flexible and
adaptable. On the other hand, the theory is useless unless the student can
effectively bridge the gap between theory and application. Thus, we have
attempted to develop a text with a rigorous theoretical and conceptual basis,:
interspersed with a relatively large number of examples and solutions. We._
have stressed to our students the desirability of working these examples befare
reviewing the solutions.

This text is intended to be d /earning text rather than a teachmg text. We
have attempted to be thorough; but as a consequence of limited space and the
short time a student spends in formal education, it is unreasonable to expect
the student to appreciate all of the subtleties that will: be apparent to the
experienced reader. It is our hope that students will attain a basic:level. of
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Xii . Preface

understanding of theory and rationale of applications in their formal use of
this text such that deeper insights can be gained in a self-instructional mode
throughout their professional careers, as the need arises.

Following this philosophy, the text contains more material than one could
hope to cover in one term—nor do we recommend a two-term sequence at the
expense of the students’ flexibility to shape their graduate curricalum to meet
their individual needs. In three contact hours per week in a term, we have
covered at a fairly rapid pace, all the chapters except for parts of Chapter 7
and Chapters 11 and 12; with four contact hours per week, we have covered
thoroughly and at a more acceptable pace, ten chapters (excluding Chapters
12and 7 or 11).

The theoretical basis of classical thermodynamxcs is developed in the first
five chapters; that can be covered in one-third to one-half of a term. The flow
of concepts is illustrated schematically in Figure P.1. The developments up
to the introduction of the Fundamental Equation parallels the historical
evolution of the classical body of knowledge (see Chapter 1). :

The introduction of the formalism of the Fundamental Equation and
Legendre transforms is a departure from traditional chemical engineering
texts. (This route is becoming commonplace in physics and some other engi-
neering fields, but these are often devoid of practical applications.) The Fun-
danmiental Equation isintroduced because we believe it is of significant
conceptual value in treating one of the central problems in engineering ap-
plications, namely, what are the minimum -data required to reach a given
objective and how does one manipulate:available data to forms that are more
appropriate to the problem at hand.

The Fundamental Equation in the:energy reprcsentauon ives; U i (S V,
Ni..., N,), contains all thermodysamic information for a given single-
phase, _simple system. All other thermodynamic properties can be derived
from-it. Although we donot have available the Fundamental Equation for
many materials, we can determine what other data sets have equivalent infor-
mation content. Using Legendre transfaormations to preserve the information
content, it is shown that, e.g., H =£(S, P, N, . . ., N,) is-also a Fundamental
Equation and, thus, a Mollier diagram ¢ontains all thermodynamic informa-
tion. Similarly, the Fundamental Equation of a. pure material can be recon-
structed from the equation of state:gnd the heat capacity. Thus, any problem
can be solved using P-V-T and C; dﬂa if these data are available, we need
not:search for any other data.

The last half of the text covers systems of increasing complexity. Follow-
ing a discussion of single-phase systems of \pure materials (Chapter 6), the
criteria of equilibrium and stability are introduced (Chapter 7) so as to set
the:stage for treating mixtures and phase equilibrium.

‘Single-phase mixtures are synthesiezd from pure materials using the cri-
teria  of equilibrium to mix reversibly. Paralleling the pure material devel-
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opment, the type of data necessary to describe a mixture is discussed. The
concept of ideal mixing is then appreciated as an idealization for which
mixture properties can be synthesized from pure component data. Many com-
mon mixture properties (e.g., chemical potential, fugacity, activity coeffi-
cient) are explored as alternative, methods of presenting similar inforination.

Phase equilibrium and chemical equilibrium are treated as progressively
more complex applications of the building blocks covered previously. In these
areas especially, it is stressed that thermodynamics is of little practical utility
without sound engineering judgment. A phase diagram can only be con-
structed when there is prior knowledge of what phases do in fact exist and
what properties (e.g., information equivalent to the Fundamental Equation)
each phase exhibits. Similarly, the concept of chemical equilibria is of little
use in the complex systems engineers generally face until there are data or
insight into the kinetically feasible routes.

The last two chapters of the book deal with the thermodynamics of sur-
faces and nucleation (Chapter 11) and the thermodynamics of systems in
electric, magnetic, stress, or other potential fields (Chapter 12). The ap-
proach used is parallel to that developed earlier, i.e., the applicable Funda-
mental Equation is found and Legendre transforms émployed to relate the
variables of interest in any real application.

It is impossible to acknowledge all who made this book a reality. We
have been influenced by authors of previous articles and texts in thermody-
namics and by our teachers. Professors J.M. Smith and H.P. Meissner
excited our interest in this field and illustrated its power to attack and solve
real and significant problems. Our students were critical and demanding and
therefore a real delight. Sanjay Amin and Margaret Nemet provided signi-
ficant comments as we approached completion. The typing was done in a
superb manner by Ms. Judith Hawkins and Ms. Maria Tseng. To our wives
and children, we are deeply indebted and grateful for their encouragement,
understanding, and patience. Their confidence in this joint venture was a
constant source of inspiration.

Cambridge, Mass. , ‘ M. Modell
R.C. Reid
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Introduction 1

1.1 The Scope of Classical Thermodynamics

To the scientist, classical thermodynamics is one of a few mature fields
epitomized by a rather well-defined, self-consistent body of knowledge. The
essence of the theoretical structure of classical thermodynamics is a set of
natural laws governing the behavior of macroscopic systems. The laws are
derived from generalizations of observations and are largely independent of
any hypothesis concerning the microscopic nature.of matter. From these laws,
a large number of corollaries and axioms .are derivable by proofs based
entirely on logic.

The scientist is sometimes at a loss to understand why the engineer has
so much difficulty applying thermodynamics; after all, the theoretical devel-
opment is ratherstraightforward. From the engineer’s point of view, under-
standing the theory as developed by the chemist or physicist is not particularly
difficult; however, the neat, self-contained presentation of the subject by the
scientist is not necessarily amenable to practical application. Real-world
processes are usually far from reversible, adiabatic, or well-mixed; very rarely
are they isothermal or at equilibrium; few mixtures of industrial importance
are ideal. Thus, the engineer must take a pragmatic approach to the appli-
cation of thermodynamics to real systems. One of his major concerns is to
redefine the real problem in terms of idealizations to which thermodynamics
can be applied.



) ) Introduction  Chap. 1

In the engineering context, almost all problems of thermodynamic im-
portance can be classified into one of three types:

1. For a given process with prescribed (or idealized) internal constraints
and boundary conditions, how do the properties of the system vary?

2. To effect given changes in system properties, what external inter-
actions must be imposed ? (The inverse of 1.) g

3. Of the many alternative processes to effect a given change in a system,
what are the efficiencies of each with respect to the resources at our
disposal ?

Problems of the first two classes require application of the First Law,
which is developed in Chapter 3:

AE=Q0— W (1-1)

where E is energy and Q and W are the heat and work interactions, respec-
tively. The First Law may also be viewed as: :

internal changes = Y interactions occurring at boundaries

The change in energy can be related to variations of other internal proper-
ties of interest (e.g., T, P, V, etc.).

The third class of problems requires application of the Second Law, for
which an idealization — the reversible process — is introduced as a standard
for comparison.

There are basically only three steps requnrcd to develop a solution to any
thermodynamic problem:

1. Definition of the problem. The real-world situation must be modelled
by specifying the internal-constraints and boundary conditions. For
example, is a boundary permeable, semipermeable, or impermeable?
Is heat transfer fast or slow relative to the time span of interest? Which
chemical reactions are known to occur under the conditions of interest ?

2. Application of thermodynamic laws. As described above, these either
relate effects internal to the system with external interactions (the
First Law) or they set limits on the extent of internal variations (the
Second Law). The combined laws prescribe in part the relationships
between property variations, but they do not uniquely specify the
magnitude of the change in properties. For example, for a simple
system undergoing a process in which the temperature and pressure
are observed to change from T,, P, to T,, P;, we might wish to cal-
culate the energy change in order to specify the necessary heat and work
interactions. We might employ the following analysis:

a. From thermodynamic reasoning, AE is a unique function of T,, P,
and T,, P, because E is a state function. Therefore, AE can be
evaluated over any path between these end states.

-




Sec. 1.2 Preclassical Thermodynamics ! . ) 3

-b. From mathematical reasoning, over any path for which E is defined,
dE may be expressed as.an exact differential such as:

AE = f dE = f : (g%)h dT + f : (g%)n ap (1-2)

Note that (dE/dT), and (dE/dP), must be expressed as functions
of T and P before Eq. (1-2) can be integrated.

c. Applying thermodynamic reasoning, E is defined as a function of
T and P over a reversible path and, thus, (JE/dT), and (9E/dP),
can bereduced to other variable sets that are more readily quantified!

Ty dV Py 0V 0V
AE = f . [_c, = P(ﬁ)P] dT == f - [T(ﬁ)P + P(a?)_r] dpP
(1-3)
where C, is the constant-pressure heat capacity. Note that Eq.
(1-3) is a general result; it must be satisfied by any material under-
going a change from T, P, to T,, P,. However, the value of AE is
not unique; it differs from one material to the next, which leads us
to the third and final step.

3. Evaluation of property data. There are property relauonshlps that are
unique characteristics of matter. For example in Eq. (1-3), thermody-

namics does not dictate ‘the functions,

C, =f(T,P); V=JT,P) )

‘required for the integration. Evaluation of these ‘property data lie
outside of the scope of classical thermodynamics. However, they are
essential to the solution of real problems and, hence, are within the
scope of this text. The cngineer must make recourse to a variety of
methods (e.g., literature, experiments, correlations, or microscopic
theories as developed with statistical mechanics) in order to determine
or approximate these property relationships.

Before discussing the approach to classical thermodynamics (Section
1.3) used herein, it is-instructive to review the historical evolution of this body
of knowledge.

1.2 Preclassical Thermodynamics

The origin of classical thermodynamics can be traced back to the early
1600’s. The laws, as we know them today, were not formalized until the late
1800’s. The interim 250 to 300 years are called the preclassical period, during
which many of our current concepts were developed.

The chronological development is a fascinating example of the appli-
cation of scientific methodology. Experimentation (e.g., thermometry) led



