Wulf Werum/Hans Windauer

Introduction to

PEARL

Process and Experiment
Automation Realtime Language

Programm
Angewandte Informatik

Vieweg

Wulf Werum
Hans Windauer

Introduction to PEARL

Process and Experiment Automation
Realtime Language

Description with Examples

\"/

Friedr. Vieweg & Sohn Braunschweig/Wiesbaden

CIP-Kurztitelaufnahme der Deutschen Bibliothek

Werum, Wulf:
Introduction to PEARL: process and experiment
automation realtime language; description with
examples/Wulf Werum; Hans Windauer. —
Braunschweig; Wiesbaden: Vieweg, 1982.
(Programm Angewandte Informatik)
ISBN 3-528-03590-0

NE: Windauer, Hans:

All rights reserved
© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig 1982

No part of this publication may be reproduced, stored in a retrieval system or transmitted,
mechanical, photocopying or otherwise, without prior permission of the copyright holder.

Printed by W. Langeliiddecke, Braunschweig
Bookbinder: W. Langeliidddecke, Braunschweig
Cover design: Peter Morys, Wolfenbiittel
Printed in Germany

ISBN 3-528-03590-0

PREF ACE

PEARL (Process and Experiment Automation Realtime Language)
is a general purpose high order language designed to meet the requirements
of realtime programming in all fields of process and experiment automation

by means of computers.

PEARL has been developed in the period from 1969 until 1976 by cooperation
of German manufacturers (e.g. AEG , BBC , Siemens), software and systems
houses (e.g. ESG, GEI , GPP , IDAS , mbp , Werum), scientific institutes (e.g.
Hahn-Meitner-Institute of Berlin, Nuclear Research Centre of Jiilich,
Universities of Erlangen, Heidelberg and Stuttgart) and users, organized

by GMR - VDI/VDE, the German association of engineers. The development
has been managed by the project PDV of the Kernforschungszentrum
Karlsruhe GmbH; it has been supported by the Federal Ministry of Re-

search and Technology of Germany. More detailed information about

history and applications of PEARL can be read in Martin 78 and Martin 81.

In mid 1978 the draft standard of Basic PEARL was published (Standard 78).
This standard defines that subset of the full language PEARL, which has to

be common to all PEARL implementations. The draft standard of Full PEARL
was finished in mid 1980 (Standard 80).

Since 1979 the PEARL Association cares about PEARL activities of

common interest, especially about interests of PEARL users.

This language reference manual describes a subset of Full PEARL, which
contains in addition to Basic PEARL those language features of Full PEARL
necessary for elegant and efficient programming of complex applications.
In principal only those features of Full PEARL are not considered, which
require additional storage and administration effort at runtime. The exten-
sions and restrictions in contrast to Basic PEARL and Full PEARL, resp.,

are listed in the appendix.

For this language Werum developed a portable compiler, which has been
used by Werum and other institutions to implement the language on the

computers

- Amdahl 470/6 (for cross compilation)

- Hewlett Packard HP 1000

- Hewlett Packard HP 3000

- INTEL 8086

- Norsk Data NORD 10 , NORD 100

- RDC (a Really Distributed Computer Control System;
see Syrbe 78 and Steusloff 80)

- Siemens 404/3

- Siemens 310

- Siemens 330, R 30

- Siemens 7.760 (for cross compilation).

The rnanual consists mainly of three parts: first, the introduction
characterizes the "new" features of PEARL, i.e. the most important
differences to older high order languages like FORTRAN or PL/I.

For reasons of good understanding the second part describes only those
features necessary to write simple programs. Additional possibilities are
presented in the third part, which is followed by selected references to

literature. For further references see Martin 78, Martin 81 and Kappatsch 79.

The appendix contains a list of all keywords, a table showing the valid
possibilities to use the data types and a complete syntax description.

(In order not to confuse the reader, the paragraphs often don't define
the complete syntax of a language feature.) Paragraph 4 and 5 of the
appendix list the extensions and restrictions in contrast to Basic PEARL

and Full PEARL , respectively. The manual is closed by an index.

The language reference manual presented here is a translation of Werum 78

taking into account most recent standardization results (Standard 80).

Vi

CONTENTS

Page
Part I : INTRODUCTION 1
1. IMPORTANT LANGUAGE FEATURES 2
1.1 Realtime Features 2
1.2 Input and Output 4
1.3 Program Structure >
2. RULES FOR THE CONSTRUCTION OF PEARL 6
PHRASES

2.1 Character Set 6
2.2 Basic Elements 8
2.2.1 Identifiers 8
2.2.2 Number Constant Denotations 9
2.2.3 String Constant Denotations 10
2:2:4 Time Constant Denotations 11
2.2.5 Comments 12
2.3 Construction of PEARL Phrases 12
Part II : BASIC POSSIBILITIES

1. PROGRAM STRUCTURE 17
2. PROBLEM DATA 20
2.1 Scalar Problem Data 22
2.1.1 Variables for Integers 22
2.1.2 Variables for Reals 23
2.1.3 Variables for Bit Strings 23
2.1.4 Variables for Character Strings 24
2.1.5 Variables for Clocks 24
2.1.6 Variables for Durations 24
2.2 Arrays of Problem Data 25

Vil

3.1

3.2

4.1
4.2

4.3

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7

4.4
4.4.1

4.4.2

5.1

5.1.1
5.1.2
5.1.3

5.2

6.1

6.2

6.3

6.4

PROCEDURES
Declaration of Procedures

Calling Procedures

PARALLEL ACTIVITIES
Task Declarations
Interrupts

Task Control Statements
Schedules

Start

Termination

Suspend Statement
Continue Statement
Delay Statement

Prevent Statement

Synchronization of Tasks
Exclusive Synchronization by means of
Sema Variables

Synchronization by means of Bolt Variables

EXPRESSIONS , ASSIGNMENTS

Expressions
Monadic Operators
Dyadic Operators

Evaluation of Expressions

Assignments

SEQUENCE CONTROL STATEMENTS
Goto Statement

If Statement

Case Statement and Duminy Staternent

Loop Statement

Vil

28

30

32

35

36

37

38
38
41
44
45
45
46
47

48
49

53

57

57
59
60
64

65

67

67

68

69

71

7.1

7.2

1.3

7.4

7.5

7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.7
7.5.8

7.6

Part III :

INPUT , OUTPUT

System Division

Definition of Data Stations in the Problem Division
Opening and Closing Data Stations

Read and Write Statement

Get and Put Statement
F-Format

E-Format

A-Format

B-Format

T-Format

D-Format

List-Format

Remote-Format

Take- and Send-Statement

ADDITIONAL POSSIBILITIES

STRUCTURES

USING BIT STRINGS AND CHARACTER STRINGS

DEFINITION OF NEW DATA TYPES

INDIRECT ADDRESSING WITH REFERENCE
VARIABLES

BLOCK STRUCTURE , SCOPE OF OBJECTS

COMMUNICATION BETWEEN MODULES

INITIAL ATTRIBUTE

74

74

79

85

88

95
100
102
103
104
106
107
108
109

109

111

112

117

120

122

126

129

133

8. INVARIANT ATTRIBUTE

s RESIDENT OBJECTS

10. REENTRANT PROCEDURES

11. OPERATORS

11.1 Operators for Type Conversion

11.2 Further Standard Operators

11.3 Definition of New Operators

1.2; INTERRUPT STATEMENTS

13. SIGNALS

14. ADDITIONAL POSSIBILITIES IN THE SYSTEM
DIVISION

15 LENGTH DEFINITION

LITERATURE

APPENDIX

1. LIST OF KEYWORDS WITH SHORT FORMS

2. USE OF DATA TYPES

3. SYNTAX LIST

5.1 Basic Elements, Program

3.2 Problem Division

3.2.1 Declarations

3:2:2 Specifications

134

136

137

138

138

140

142

145

148

151

153

154

156

158

160

160

163
163
168

3.2.3

3.3

INDEX

Statements

System Division

EXTENSIONS WITH RESPECT TO BASIC PEARL

RESTRICTIONS WITH RESPECT TO FULL PEARL

XI

168

174

175

178

180

Part |

Introduction

1.1

IMPORTANT LANGUAGE FEATURES

Realtime Features

A program for on-line control or evaluation of a technical process has

to react rapidly on spontaneously received information of the process

or on timely results. OQut of this reason it is not sufficient to arrange

and go through the various divisions of the program sequentially, that
means in timely unchanged sequence. It is of importance that the more

or less complex automation problem has to be divided into problem-
justified components of different states of urgency and that the

program structure must be fitted to this problem structure. This

causes the existence of independent program elements for sub-problems
ready to be solved timely sequentially among other problems (e.g. proce-
dures). However, there also arise independent program elements for
sub-problems, which based on a timely not determined cause (e.g. disturbance
in the process under control) have to be solved immediately parallel to
other problems.

The execution of such a program element is called "task", for determination

of urgency such tasks can be provided with priorities.

Concerning the definition and combination of tasks - with regard to the

technical process - PEARL offers the following possibilities:

Definition of tasks, e.g.
SUPPLY: TASK PRIORITY 2;
taskbody (definitions, statements)
END;

Start (activation), e.g.
ACTIVATE SUPPLY;

Termination, e.g.
TERMINATE PRINTING;

Suspension, e.g.
SUSPEND STATISTICS;

. Continuation, e.g.
CONTINUE STATISTICS;

Delay, e.g.
AFTER 5 SEC RESUME;

According to demands of automation problems some of these statements
can be scheduled for their (repeated) execution, e.g. scheduled for the
case of time entrance, the end of a duration or the occurrence of an

interrupt:
WHEN READY ACTIVATE SUPPLY;

(Meaning: Each time when the interrupt READY occurs, the task
SUPPLY has to be activated.)

Schedules can also determine the timely periodical start:

AT 12:0:0 EVERY 30 MIN UNTIL 15:0:0 ACTIVATE PROTOCOL;

As far as certain actions do not interfere, different tasks execute their
statements independently of each other. Sometimes however synchronization
of two or more tasks is required, e.qg. if a task periodically creates data

for other tasks and puts them into a buffer. In this case the producer

is not allowed to work faster than the consumer.

Synchronization problems of higher complexity arise, if a task must have
exclusive access to a file (when writing), while others also participate

simultaneously (when reading).

In order to solve such synchronization problems PEARL contains the

synchronization primitives sema and bolt variables.

1.2

Input and QOutput

In order to cope with devices of standard periphery (printer, card reader, disc
etc.) or process periphery (measurement points, valves and so on) as
well as with the administration of files PEARL provides computer inde-

pendent statements.

Devices and files are being summarized with the term data station.

In general there exist two kinds of data transfer:

The transfer of data without transforming them to (or from) external
representation:
This kind of data transfer is provided for file handling allowing se-

quential and direct access and for transfer of process data.

Examples:

READ ARTICLE FROM ARTICLEFILE BY POS (10);
SEND OFF TO MOTOR (I)

The transfer of data with transforming them to (or from) external
representation:
This means for example the representation of data with characters of the

character set of the data station.

Example:

PUT RESULT TO PRINTER BY F (5);

The names of data stations are free-to-be-chosen. This results by dividing
a PEARL program into computer dependent and mostly computer indepen-

dent divisions.

1.3

Program Structure

Program systems for solving highly complex automation problems should

be modular. PEARL meets this requirement based on the fact that a

PEARL program is composed of one or several independently compilable
units, the so-called modules. In order that statements for input/output

as well as for handling events in the technical process (interrupts) or

in the computer system (signals) can be programmed computer inde-
pendently, generally a module consists of a system division and a problem
division.

The hardware configuration is described in the system division. In particular,
freely-chosen user identifications may be attached to devices, interrupts,

and signals.

In the following example a valve is connected with the connection point 3
of a digital output device which has the computer-dependent "system
identification" DIGOUT(1). The valve, i.e. the connection point 3 of
DIGOUT(1), shall become the freely-chosen "user identification" VALVE.

VALVE: DIGOUT(1) * 3;
Now it is possible to program the algorithm for solving the input/output

problem computer independently in the problem division by using the

user identification introduced in the system division, e.q.:

TAKE STATUS FROM VALVE;

RULES FOR THE CONSTRUCTION OF PEARL PHRASES

A PEARL program can be written without usage of special program-forms;
no special attention has to be paid to the fact that a statement begins

on a certain line.

All elements of a PEARL program are composed of the following characters.
Character string denotations and comments are permitted to be composed

of each character, which is accepted by the machine configuration.

Character Set

The character set of PEARL contains the following elements:

capital letters A - Z,
. the digits 0 to 9 and

the special characters
s blank, space,
! apostrophe,
(left parenthesis,
) right parenthesis,
3 comma,

period, pot,
3 semicolon,

colon,

+ plus sign,

minus sign, hyphen,

asterisk,

~ %

slash,

equal-sign,

left angle bracket,
right angle bracket,
left bracket,

[o VI

right bracket

The following combinations of special characters are being interpreted

as one unit:

** exponentiation operator
/* begin of a comment,
*/ end of a comment,
// integer division operator,
== operator equal,
/= operator not equal,
< = operator less or equal,
>= operator greater or equal,
operator cyclic shift,
>< operator concatenation,
:= assignment symbol,
<- transfer direction symbol: arrow left,
<-)> transfer direction symbol: double arrow,

- > transfer direction symbol: arrow right.

In case there aren't all of these symbols available on the device concer-

ning program-writing, the following characters could be used alternatively:

LT for <
GT for >
NE for /=
LE for <=
GE for >=
CSHIFT for <>
CAT for ><
(/ for [
N for]

