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Preface

Making precise approximations to solve equations is an occupation of
applied mathematicians which distinguishes them from pure mathemati-
cians, physicists and engineers. A precise approximation is not a con-
tradiction in terms but rather an approximation with an error which
is understood and controllable; in particular the error could be made
smaller by some rational procedure. There are two methods for obtain-
ing precise approximations to the solutions of an equation, numerical
methods and analytic methods, and this book is about the latter. The
analytic approximations are obtained when some parameter of the prob-
lem is small, and hence the name perturbation methods. The perturba-
tion and numerical methods are not however in competition but rather
complement one another as the following example illustrates.
The van der Pol oscillator is governed by the equation

4+ ki(z?-1)4z =0

In time the solution tends to an oscillation with a particular amplitude
which does not depend on the initial conditions. The period of this
limit oscillation is of interest and is plotted in figure 1 as a function of
the strength of the nonlinear friction, k. The circles give the numerical
results obtained by a Runge-Kutta method. The dashed curves give the
first and second order perturbation approximations

o7 (1 + Lk2 X ~
Period = ﬂ( TR+ o( )) ask—0
k(3 —2In2) +7.0143k~ Y3 + O(k~'Ink) ask— oo

At intermediate values of the parameter k, from 2 to 6, the numerical
method is most useful. At extreme values however the numerical method
loses its accuracy rapidly, for example by k& = 10 the time-step must
be reduced to 0.01 in order to obtain 5 figure accuracy. The analytic
approximations take over in the extreme conditions. Further they give an
explicit dependence on the parameter k rather than the isolated results

ix
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Fig. 1 The period of the limit oscillation of the van der Pol oscillator as a
function of the strength of the nonlinear friction k.

at particular values from the numerical method. But the most important
feature of the figure is the satisfying agreement between the numerical
approximation and the two independent perturbation approximations —
such checks are essential in research.

Obtaining good numerical values for the solution is not the only quest
of a perturbation approximation. One can hope that the analysis will
reveal some physical insights through the simplified physics of the lim-
iting problem. In this book I will however suppress the physics in the
problems discussed.

Finding perturbation approximations is an art rather than a science.
In research it is useful to be responsive to suggestions from the physics.
There is certainly no routine method appropriate to all problems, or
even classes of problems. Instead one needs a determination to exploit
the smallness of the parameter. This book attempts to present many
of the weapons which have been found useful, but they should not be
viewed as exhaustive.

While this book is mathematical, no attempt has been made to make
the arguments fully rigorous. In general I have tried to explain why
the results are correct. Often these reasons can be turned into strict
theorems, albeit with some difficulty in the case of singular problems.
My own opinion is that such superficial rigour rarely adds to the under-
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standing of the problem, and that of greater use is a numerical statement
about the range of applicability achieving some specified accuracy.

This book is based on a course of lectures which I gave for a number
of years to first year graduate students in the University of Cambridge.
In its turn it was based on my own education from a course of lectures
by L. E. Fraenkel and from the book on the subject by M. Van Dyke.
These two inspiring teachers asked many interesting questions which I
have attempted to answer in this book; questions such as why are some
results convergent whilst others only asymptotic, why is matching pos-
sible, what selection criterion should be used with strained co-ordinates,
and what characterises problems to be tackled by multiple scales.

While no previous knowledge of perturbation methods is assumed,
some previous experience is probable. The students who attended my
lecture course would have seen several examples (small friction on projec-
tiles, perturbed energy levels in quantum mechanics, adiabatic invariants
in Hamiltonian systems, Watson’s lemma, and viscous boundary layers
in fluid mechanics) usually presented in an informal way relying heavily
on physical insight. They would not however have seen a formal and
organised approach to a perturbation problem.

The eventual goal of this book is to present the method of matched
asymptotic expansions and the method of multiple scales, progressing
to an advanced level in considering the more difficult issues such as the
occurrence of logarithms and the occurrence of more than two scales.
Tackling differential equations with such singular perturbation problems
is certainly not easy. Fortunately many of the essential concepts can be
presented in the simpler context of algebraic equations and later with in-
tegrals. Thus issues such as iterations and expansions, singular problems
and rescaling, non-integral powers and logarithms will be presented well
before the difficult singular differential equations are encountered. Fi-
nally I should observe that most of the chapters follow the basic method
with an advanced application whose understanding is not essential to
the following chapters — thus §§ 1.6, 3.5, 5.3, 5.4, 5.5, 5.6, 6.3, 7.3, 7.4
and 7.6 should be viewed as optional.

E.J. Hinch
Cambridge, 1990
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_1_

Algebraic equations

Many of the techniques of perturbation analysis can be introduced in
the simple setting of algebraic equations. By starting with some partic-
ularly easy algebraic equations, three quadratics, we can benefit from
the luxury of the existence of exact answers, taking useful hints from
them to overcome difficulties.

1.1 Iteration and expansion

We start with the equation for z which contains the parameter e,
2 —
z°+ex—1 =0
This has exact solutions

T = —det /14 ;€

which can be expanded for small € as

{ +1— Je+ 2€% — 1hz€e* + O(%)
T =

—1—1e— L1+ Lge* + O(°)

These binomial expansions converge if || < 2.

More important than converging, the truncated series give a good
approximation if € is small. The first few terms give a result within 3%
of the exact result if

ll < 005 0.5 1.2 1.6
r = 1 - le 4+ 3 — 3zt + O(f)
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The last 1.6 being not too far from the convergence boundary. Alterna-
tively for the fixed value of € = 0.1 the first few terms give

r ~ 1.0
0.95
0.95125
_ 0.95124921...
exact = 0.95124922...

Often the numerical summation of these short expansions involves less
computer time than the evaluation of the exact answer with its costly
surds.

We started by finding the exact solution of the quadratic equation and
then we expanded the exact solution. In most problems, however, it is
not possible to find the exact solution. We must therefore develop tech-
niques which first make the approximations and then, only afterwards,
involve a calculation. There are two distinct methods of first approx-
imating and then calculating, the iterative method and the expansion
method. Each method has its own advantages and disadvantages.

Iterative method

We start with the iterative method, because it is a method which is often
overlooked although it has much to offer.

The first step of the iterative method is to find a rearrangement of
the original equation which will become the basis of an iterative pro-
cess. This first step involves a certain amount of inspiration which must
therefore count as a major drawback of the method. A suitable re-
arrangement of our present quadratic is

r = V1 —e€x

Any solution of the original equation is a solution of this rearrangement
and vice versa.

Working with just the positive root, we thus adopt the iterative pro-
cess

Tpy1 = V 1 — T,

The iterative process needs a starting point, the value of the root when
e=0,zy=1.
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Making the first iteration, we find
T, = V1—e¢
which can be expanded in a binomial series
1.2

- 1 -1, 1.2_ 1.3, ..
z, =1 3€— g€ 6€ +

Looking at the exact answer, we see that the €2 and higher terms are
erroneous. We therefore truncate the series for z; after the second term:

T, = 1—3e+---
Proceeding to the next iteration, we find
Ty = \/1—€(1—3e)
which can be expanded, this time retaining only terms up to €2:

€(1—3€) — 22(14--- )%+

T, = 1-—
1-— 6+%62+-'-

N= N

We note that the €2 term is now correct after two iterations. Iterating
again, we find

T, = \/l—e(l—%e+§62)

= 1-%e(l-let+ie?)-1ef(1-fe+-- )P —Led(1— )3+

= 1—%e+§62+063+~-~

It is clear that progressively more work is required to obtain the higher
order terms by the iterative method. The method also has the unde-
sirable feature that in the early iterations it gives erroneous values to
the higher terms. One can only check that a term is correct by making
one more iteration, which of course is usually convincing but no rigorous
proof (but see §1.5).

Ezpansion method

The first step of the expansion method is to set ¢ = 0 and find the
unperturbed roots £ = 1. Then one poses an expansion about one of
these roots, say £ = +1, expanding in powers of ¢, i.e.

z(€) = 1+ ez, + ey + Sz + -



4 1 Algebraic equations

This expansion is formally substituted into the governing quadratic
equation.
1 + ez, + €e(22+2z,) + (22,2, +2x;) +--
+ € + €*r, + €z, + o

Here one ignores potential difficulties in making the substitution such
as the limitations in multiplying series term by term. The coefficients of
the powers of € on the two sides of the equation are now compared.

At €% 1-1 =0
This level is satisfied automatically because we started the expansion
from the correct value z =1 at ¢ = 0.

At €l 2z, +1 =0 ie. ¢, =-1

At €% 2 +2z,+z; =0 ie zy=3
Here the previously determined value of z; has been used.

At €3 22,7, + 223+ T, = 0 ie z3=0
again using the previously determined values of z; and z,.

The expansion method is much easier than the iterative method when
working to higher orders. To use the expansion method, however, it is

necessary to assume that the result can be expanded in powers of € and
that the formal substitution and associated manipulations are permitted.

Exercise 1.1. Find four terms in the expansion of the root near
z = —1, using both the iterative and expansion methods.

1.2 Singular perturbations and rescaling

In this section we study the quadratic
ex?+zr—1 =0

If € = 0 there is just one root at x = 1, whereas when € # 0 there are two
roots. This is an example of a singular perturbation problem, in which
the limit point ¢ = 0 differs in an important way from the approach
to the limit ¢ — 0. Interesting problems are often singular. Problems
which are not singular are said to be regular.

To resolve the paradox of the behaviour of the second root we take the
exact solutions to the quadratic and expand them for small € (convergent
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if || < ). The two roots are
1—e+2e—563 + -
€T =
~1/e—1+€—2€*+56 +---

Thus the singular second root evaporates off to £ = oo in the limit € = 0.

- Iterative method

To set up an iterative process for the singular root we argue as follows.
In order to retain the second solution of the governing quadratic, it is
necessary to keep the ez? term as a main term rather than as a small
correction. Thus z must be large. Hence at leading order the —1 term
in the equation will be negligible when compared with the z term, i.e.

ez’ +x ~ 0 with solution z ~ —1/e

Hence we are led to the rearrangement of the quadratic

1 1
r = —=—+4+ =
€ €z
and the iterative process
1 1
T T et G,
n
with a starting point z, = —1/e.
Iterating once we find
T, = i |
and iterating again
o 1
By = —& - 1+e€
— —6_1—1+€+~--

A further iteration is needed to obtain the €2 term correctly.

Ezpansion method

The expansion method can be applied to the singular root by posing a
power series in € which starts with an ¢! term instead of the usual €°.
The way in which one determines the correct starting point is left until
later in this section. Thus substituting

z(e) = €'z +xy+ex, +---



