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Preface

The Greek and Roman gods, supposedly, resented those mortals endowed with
superlative gifts and happiness, and punished them. The life and achievements
of Rufus Bowen (1947-1978) remind us of this belief of the ancients. When
Rufus died unexpectedly, at age thirty-one, from brain hemorrhage, he was a
very happy and successful man. He had great charm, that he did not misuse,
and superlative mathematical talent. His mathematical legacy is important,
and will not be forgotten, but one wonders what he would have achieved if he
had lived longer. Bowen chose to be simple rather than brilliant. This was the
hard choice, especially in a messy subject like smooth dynamics in which he
worked. Simplicity had also been the style of Steve Smale, from whom Bowen
learned dynamical systems theory.

Rufus Bowen has left us a masterpiece of mathematical exposition: the slim
volume Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms
(Springer Lecture Notes in Mathematics 470 (1975)). Here a number of results
which were new at the time are presented in such a clear and lucid style that
Bowen’s monograph immediately became a classic. More than thirty years
later, many new results have been proved in this area, but the volume is as
useful as ever because it remains the best introduction to the basics of the
ergodic theory of hyperbolic systems.

The area discussed by Bowen came into existence through the merging of
two apparently unrelated theories. One theory was equilibrium statistical me-
chanics, and specifically the theory of states of infinite systems (Gibbs states,
equilibrium states, and their relations as discussed by R.L. Dobrushin, O.E.
Lanford, and D. Ruelle). The other theory was that of hyperbolic smooth dy-
namical systems, with the major contributions of D.V. Anosov and S. Smale.
The two theories came into contact when Ya.G. Sinai introduced Markov par-
titions and symbolic dynamics for Anosov diffeomorphisms. This allowed the
poweful techniques and results of statistical mechanics to be applied to smooth
dynamics, an extraordinary development in which Rufus Bowen played a ma-
jor role. Some of Bowen’s ideas were as follows. First, only one-dimensional
statistical mechanics is discussed: this is a richer theory, which yields what is
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needed for applications to dynamical systems, and makes use of the powerful
analytic tool of transfer operators. Second, Smale’s Axiom A dynamical sys-
tems are studied rather than the less general Anosov systems. Third, Sinai’s
Markov partitions are reworked to apply to Axiom A systems and their con-
struction is simplified by the use of shadowing. The combination of simpli-
fications and generalizations just outlined led to Bowen’s concise and lucid
monograph. This text has not aged since it was written and its beauty is as
striking as when it was first published in 1975.

Jean-René Chazottes has had the idea to make Bowen’s monograph more
easily available by retyping it. He has scrupulously respected the original
text and notation, but corrected a number of typos and made a few other
minor corrections, in particular in the bibliography, to improve usefulness
and readability. In his enterprise he has been helped by Jer6me Buzzi, Pierre
Collet, and Gerhard Keller. For this work of love all of them deserve our
warmest thanks.

Bures sur Yvette, mai 2007 David Ruelle
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Introduction

The main purpose of these notes is to present the ergodic theory of Anosov and
Axiom A diffeomorphisms. These diffeomorphisms have a complicated orbit
structure that is perhaps best understood by relating them topologically and
measure theoretically to shift spaces. This idea of studying the same example
from different viewpoints is of course how the subjects of topological dynamics
and ergodic theory arose from mechanics. Here these subjects return to help
us understand differentiable systems.

These notes are divided into four chapters. First we study the statistical
properties of Gibbs measures. These measures on shift spaces arise in modern
statistical mechanics; they interest us because they solve the problem of de-
termining an invariant measure when you know it approximately in a certain
sense. The Gibbs measures also satisfy a variational principle. This princi-
ple is important because it makes no reference to the shift character of the
underlying space. Through this one is led to develop a “thermodynamic for-
malism” on compact spaces; this is carried out in chapter two. In the third
chapter Axiom A diffeomorphisms are introduced and their symbolic dynam-
ics constructed: this states how they are related to shift spaces. In the final
chapter this symbolic dynamics is applied to the ergodic theory of Axiom A
diffeomorphisms.

The material of these notes is taken from the work of many people. I have
attempted to give the main references at the end of each chapter, but no doubt
some are missing. On the whole these notes owe most to D. Ruelle and Ya.
Sinai.

To start, recall that (X, %, u) is a probability space if % is a o-field of
subsets of X and u is a nonnegative measure on % with u(X) = 1. By an
automorphism we mean a bijection T : X — X for which

(i) Ee®B if T"'Ec 4B,
(i) w(T 'E)=u(E) forEcB.
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IfT: X — X is a homeomorphism of a compact metric space, a natural
o-field 4 is the family of Borel sets. A probability measure on this o-field is
called a Borel probability measure. Let .# (X ) be the set of Borel probability
measures on X and .#p(X) the subset of invariant ones, i.e. p € A (X) if
w(T~'E) = u(E) for all Borel sets E. For any u € .#(X) one can define
T*ue€ #(X) by T*u(E) = w(T7'E).

Remember that the real-valued continuous functions ¥ (X ) on the compact
metric space X form a Banach space under ||f|| = max,ex |f(x)|- The weak
x-topology on the space € (X)* of continuous linear functionals a : €(X) — R
is generated by sets of the form

U(fie,ap) ={ae€(X)" : |a(f) — ao(f)] < e}

with f € €(X), e > 0, ag € €(X)*.

Riesz Representation. For each p € .#(X) define o, € €(X)* by a,(f) =
[ fdu. Then p < «, is a bijection between .#(X) and

{a € €(X)" : a(1) =1 and a(f) > 0 whenever f > 0}.

We identify o, with u, often writing ;1 when we mean a(u). The weak *-
topology on €' (X)* carries over by this identification to a topology on .#(X)
(called the weak topology).

Proposition. .#(X) is a compact conver metrizable space.

Proof. Let {fn}52, be a dense subset of ¢ (X). The reader may check that
the weak topology on .#(X) is equivalent to the one defined by the metric

[t~ [ fndu" .o

Proposition. .#r(X) is a nonempty closed subset of #(X).

d(p, ') = Z 27" || fall 7!
n=1

Proof. Check that T* : .#(X) — .#(X) is a homeomorphism and note that
Mr(X) = {p € M(X): T*u = n}. Pick p € #(X) and let p, = L(p+
T*p+ -+ (T*)" ). Choose a subsequence p,, converging to u’ € 4 (X).
Then y' € #r(X). O

Proposition. p € #p(X) if and only if
/(fOT) dp = /fdu for all f € €(X).

Proof. This is just what the Riesz Representation Theorem says about the
statement T*p = pu. O
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Gibbs Measures

A. Gibbs Distribution

Suppose a physical system has possible states 1,...,n and the energies of these
states are F1,..., E,. Suppose that this system is put in contact with a much
larger “heat source” which is at temperature T'. Energy is thereby allowed to
pass between the original system and the heat source, and the temperature T’
of the heat source remains constant as it is so much larger than our system.
As the energy of our system is not fixed any of the states could occur. It is
a physical fact derived in statistical mechanics that the probability p; that
state j occurs is given by the Gibbs distribution

e PEi
Pi = <m —_—3E.
S
where 3 = Zr and k is a physical constant.

We shall not attempt the physical justification for the Gibbs distribution,
but we will state a mathematical fact closely connected to the physical rea-
soning.

1.1. Lemma. Let real numbers ay,...,a, be given. Then the quantity

n

n
F(py,...,pn) = ) —pilogpi+ ) pias

i=1 i=1

has mazimum value log) - €% as (p1,...,pn) ranges over the simplex
{(P1,---ypn) : i 20, p1 + -+ pn = 1} and that mazimum is assumed

only by
-1
pj =e% <Z e‘“) :
i
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This is proved by calculus. The quantity H(pi,...,pn) = Y 1) —pilogp; is
called the entropy of the distribution (pi,...,pn) (note: p(x) = —xlogz is
continuous on [0,1] if we set ¢(0) = 0.) The term )_©_, p;a; is of course
the average value of the function a(i) = a;. In the statistical mechanics
case a; = —(BE;, entropy is denoted S and average energy E. The Gibbs
distribution then maximizes

1
S—ﬂE—S—ﬁE,

or equivalently minimizes E — kT'S. This is called the free energy. The prin-
ciple that “nature minimizes entropy” applies when energy is fixed, but when
energy is not fixed “nature minimizes free energy.” We will now look at a
simple infinite system, the one-dimensional lattice. Here one has for each in-
teger a physical system with possible states 1,2,...,n. A configuration of the
system consists of assigning an z; € {1,...,n} for each i:

r_2 T o T 2 T3
Thus a configuration is a point

o= {x; f:"fOOGH{l,..,,n}:Zn.
z

We now make assumptions about energy:

(1) associated with the occurrence of a state k is a contribution @¢(k) to the
total energy of the system independent of which position it occurs at;

(2) if state k; occurs in place i, and ks in iz, then the potential energy due to
their interaction @3 (i1, 2, k1, k2) depends only on their relative position,
i.e., there is a function @, : Z x {1,...,n} x {1,...,n} — R so that

D5 (i1, 12, k1, k2) = Po(i1 — i2i k1, k2)
(also: 452(_7 kl, kg) = @2(—].: kIQ, k‘l))
(3) all energy is due to contributions of the form (1) and (2).

Under these hypotheses the energy contribution due to g being in the Oth
place is

* 1 .
¢*(x) = Po(zo0) + ) _ 5 9205325, %o)-
J#0
(We “give” each of xp and z; half the energy due to their interaction). We
now assume that ||®a|; = supy, &, |9(Jj; k1, k2)| satisfies

Z||¢2|lj <00.
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Then ¢*(z) € R and depends continuously on z when {1,...,n} is given the
discrete topology and X, = [[,{1,...,n} the product topology.

If we just look at Z_, ... Tg . .. T, we have a finite system (n?m+!
configurations) and an energy

possible

m
En(@—m,-r2m) = Y Solz;) + Y Palk—jiax, )

j=—m —-m<j<k<m

and the Gibbs distribution u,, assigns probabilities proportional to

e PEm(z—m,.Zm) Now just suppose that for each z_,,...,Zn, the limit
B o) = Jim 3 (@l o) = @ Vi < m)

exists. Then yu € #(X,) and it would be natural to call p the Gibbs distrib-
ution on X, (for the given energy and (). If we are given z = {x;}52_ ., then
instead of E,,(z_m,...,Zm) one might add in the contributions by interac-
tions of z; (—m < j < m) with all other z}’s, i.e.,

Z (@0(1‘]‘)4' Z %‘¢2(k—‘j;xk’$.‘i)> .
j=—m k=—00

If we define the (left) shift homeomorphism o : X, — X, by o{z;}2_ =
{Zit1}32_ o, then this expression is just >.7°_, ¢*(¢0’z). This expression

differs from E,,(_p,,...,Zm) by at most
m o0 1 o0
S X gleale + > Flelk ) < S Kl
j=—-m \ k=j+m+1 k=m—j+1 k=1

Thus, if C =Yy, k|| P2|lk < 0o then Ep,(Z_p, ..., Zn) differs from
i ¢ (07z) by at most C. If we used Y70, ¢*(07z) instead of
En(Z—m,...,Zm) in the Gibbs distribution pn,, the probabilities would
change by factors in [6“20,620]. The point is that taking z; into consider-
ation for i ¢ [—m,m| may change p,,, but not drastically if one assumes
> he1 Kl Pellk < oo.

We want now to state a theorem we have been leading up to. For ¢ : X)), —
R continuous define

varg¢ = sup{|¢(z) — ¢(y)| : i =y V [1] < k}.
As ¢ is uniformly continuous, limy_, ., varge$ = 0.

1.2. Theorem. Suppose ¢ : X, — R and there are ¢ > 0, a € (0,1) so that
vargp < ca® for all k. Then there is a unique u € M,(Xy,) for which one can
find constants ¢; > 0, c2 > 0, and P such that
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u{y:yi =z; Vi=0,...,m} -
exp (—Pm + ZZ:OI ¢(g’k§)) -

for every x € X,, and m > 0.

c < ca

This measure p is written py and called Gibbs measure of ¢. Up to
constants in [c1,cz] the relative probabilities of the xq...z,,’s are given
by exp ZZ_";OI #(c*z). For the physical system discussed above one takes
¢ = —[B¢*. In statistical mechanics Gibbs states are not defined by the above
theorem. We have ignored many subtleties that come up in more complicated
systems (e.g., higher dimensional lattices), where the theorem will not hold.
Our discussion was a gross one intended to motivate the theorem; we refer to
Ruelle [9] or Lanford [6] for a refined outlook.

For later use we want to make a small generalization of X, before we prove
the theorem. If A is an n x n matrix of 0’s and 1’s, let

Fa={z€Xn: Agn.., =1 VieZ}.

That is, we consider all z in which A says that z;x;;; is allowable for every i.
One easily sees that X4 is closed and 0X4 = X4. We will always assume
that A is such that each k between 1 and n occurs at xo for some x € X 4.
(Otherwise one could have ¥4 = X'p with B an m x m matrix and m < n.)

1.3. Lemma. 0 : Y4 — X4 is topologically mizing (i.e., when U,V are non-
empty open subsets of X, there is an N so that cs™U NV # 0 Vm > N) if

and only if AM >0 (i.e., AM, > 0 Vi, j) for some M.

Proof. One sees inductively that AT} is the number of (m + 1)-strings
apay . . . a,, of integers between 1 and n with

(‘d) AGA-GA-H =1 Vk’
(b)ao =1, am = 3.
LetU,-z{gE ZA"L'OZI}#Q

Suppose X4 is mixing. Then 3N;; with U; N o™U; # 0 Vn > N; ;. If
a € U;No™Uj, then aga, .. .a, satisfies (a) and (b); so A{"] > 0 Vi,j when
m > max; j Ni,j'

Suppose AM > 0 for some M. As each number between 1 and n occurs as
xo for some z € X4, each row of A has at least one positive entry. From this
it follows by induction that A™ > 0 for all m > M.

Consider open subsets U, V of ¥4 with a € U, b € V. There is an r so

that
UD{z€Xa:axp=ay Vk|<r}
Vo{zeXa:ap=0b V[k|<r}.

Fort >2r+ M, m=t—2r > M and A™ > 0. Hence find cy,...,c, with
Co = brs Cm = Q_p, ACka-+l =1 for all k. Then

E: ...b_2b_lb0...brcl...Cm_la_r...aoal...

isin X4 and £ € ctU NV. So X4 is topologically mixing. 0O
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Let % be the family of all continuous ¢ : £4 — R for which varg¢ < ba*
(for all k > 0) for some positive constants b and « € (0,1). For any 8 € (0,1)
one can define the metric dg on X4 by dg(z,y) = BV where N is the largest
nonnegative integer with z; = y; for every |z|_< N. Then % is just the set
of functions which have a positive Holder exponent with respect to dg. The
theorem we are interested in then reads

1.4. Existence of Gibbs measures. Suppose X 4 is topologically mizing and
¢ € ZFi. There is unique o-invariant Borel probability measure p on X4 for
which one can find constants ¢; > 0, cg > 0 and P such that

w{y :yi = z; for all i € [0,m)}
exp (—Pm + ¢(ak_2;)>

ca < <c
for every x € X4 and m > 0.

This theorem will not be proved for some time. The first step is to reduce
the ¢’s one must consider.

Definition. Two functions v, ¢ € €(X4) are homologous with respect to o
(written ¢ ~ @) if there is a u € €(X'4) so that

P(z) = o(z) — u(z) +u(oz).
1.5. Lemma. Suppose ¢1 ~ ¢ and Theorem 1.4 holds for ¢1. Then it holds
for ¢2 and py, = pg,-
Proof.

m—1
Y dulc*z) = Y ¢alo*
k=0

k=0

mX: k+1 u(a,kz)

= [u(o™z) — u(z)| < 2||u] .

The exponential in the required inequality changes by at most a factor of
e2llul when ¢, is replaced by ¢3. Thus the inequality remains valid with ¢,
¢z changed and P, p unchanged. O

1.6. Lemma. If ¢ € %, then ¢ is homologous to some ¢ € F# with ¢¥(z) =
Y(y) whenever x; =y; for all i > 0.

Proof. For each 1 < t < n pick {ak,:}3>
r: X4 — X4 by r(z) = z* where

€ X4 with ap; = t. Define

—00

ot = d Tk for k>0
k™ ek, for k<0.

Let
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u(z) =Y _(6(o’z) — d(o’r(z))).
e

Since o’z and o’r(x) agree in places from —j to +oo,

|6(07z) - d(0?r(2))| < var;¢ < bal.

As 32y ba? < 00, u is defined and continuous. If z; = y; for all [i| < n, then,
for j € [0,n], _ _ _
lp(o?z) — ¢(o’y)| < varn_;¢ < ba™™’

and ' _ .
[p(a’r(z)) — ¢(a’r(y))| < ba™"7.

Hence

[uf) ~ uy)l < ZIW B’y +dlo'r(@) — o) +2 Y o

i>(3%]

(3] -
. : 4b a[2]
< 2b n—j J < Y
& E « + E « *1-a
a=n i>[4] .
This shows that u € %. Hence ¢ = ¢ — u+ uoo is in % also. Furthermore

v(z) = ¢(x) + i (¢(a”*'r(z)) — ¢(0?* ) +§: (07*'z) — ¢(o7r(0x)))
j=-1 7=0

x))+—j[: d(a7t'r(z)) — ¢(o’r(ox))) .

The final expression depends only on {z;}$2,, as we wanted. D. Lind cleaned
up the above proof for us. O

Lemmas 1.5 and 1.6 tell us that in looking for a Gibbs measure ug for
¢ € F# (i.e., proving Theorem 1.4) we can restrict our attention to functions
¢ for which ¢(z) depends only on {z;}32,.

B. Ruelle’s Perron-Frobenius Theorem
We introduce now one-sided shift spaces. One writes z for {z;}52, (we will

continue to write x for {z;}$° but never for both things at the same time).
Let

i=—00

o o]
It = {ge H{l,...,n} : Ag, 2y, =1foralli> O}

1=0
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and define o : Z‘Z — EX by o(z); = x;+1. o is a finite-to-one continuous
map of X} onto itself. If ¢ € €(Z}) we get ¢ € € (Za) by ¢({z:i}2_o) =
d({r:}2;). Suppose ¢ € €(X4) satisfies #(z) = ¢(y) whenever z; = y;
for all i > 0. Then one can think of ¢ as belonging to ¥(X}) as follows:
d({xi}20) = d({z:i}52 o) where z; for i < 0 are chosen in any way subject
to {z:}3°_,, € Xa. The functions ¥ (X)) are thus identified with a certain
subclass of € (X 4). We saw in Lemmas 1.5 and 1.6 that one only needs to get
Gibbs measures for ¢ € €(X}) N % in order to get them for all ¢ € Fi.

In this section we will prove a theorem of Ruelle that will later be used
to construct and study Gibbs measures. For ¢ € ¥ (X)) define the operator

L=Lyon¥€(Z}) by

(Lof)@) = D Wf().

y €01z

It is the fact that o is not one-to-one on Z‘Z that will make this operator
useful.

1.7. Ruelle’s Perron-Frobenius Theorem [10, 11]. Let X4 be topolog-
ically mizing, ¢ € % N€(XY) and L = L4 as above. There are A > 0,
h € €(X%) with h > 0 and v € M(Z]) for which Lh = Ah, L*v = A,
v(h) =1 and

lim [[A"™L™g —v(g)h|| =0 for all g € €(Z}).

m—00

Proof. Because L is a positive operator and £1 > 0, one has that G(u) =
(L*p())~1L*u € M (ZS) for p € M(ZF). There is a v € A (X)) with
G(v) = v by the Schauder-Tychonoff Theorem (see Dunford and Schwartz,
Linear Operators I, p. 456): Let E be a nonempty compact convex subset of
a locally convex topological vector space. Then any continuous G : E — E
has a fixed point. In our case G(v) = v gives L*v = Av with A > 0.

We will prove 1.7 via a sequence of lemmas. Let b > 0 and a € (0, 1) be any
constants so that varg¢ < ba* for all k > 0. Set B, = exp (3> 4o, 1 2ba*)
and define

A={f€‘g(2}) f=0, V(f)zlv f(Q)SBmf(Q,)v

whenever z; =z for all i€ [0,m]}.
1.8. Lemma. There is an h € A with Lh = Ah and h > 0.
Proof. One checks that A"!Lf € A when f € A. Clearly A\~'£f >0 and
v(ATILE) = XTIL(f) = v(f) = 1.

Assume z; = z; for i € [0, m]. Then

Lf(z) = e*2f(jz)

J
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where the sum ranges over all j with A;;, = 1. For 2’ the expression runs
over the same j; as jz and jz' agree in places 0 to m + 1

e f(jz) < e?U) " By f(iz') < Bme?U2) f(ix)
and so
Lflz) < Bmcf(il) .

Consider any z,z € Z’Z. Since AM > 0 there is a g' € oMy with yh = 2o-
For fe A

M-1
LMf)y= 3 exp (Z ¢(0’“g)f(g))
k=0

yea— AI£

> e—/\lllcbllf(y') .

Let K = AMeMI®l By, Then 1 = v(A"MLM f) > K= f(2) gives || f|| < K as z
is arbitrary. As v(f) = 1, f(z) > 1 for some z and we get inf \=M LM f > K1,
If 2; = x} for i € [0,m] and f € A, one has

If(z) - f(@)] < (Bm —1)K — 0

as m — oo, since B,;, — 1. Thus A is equicontinuous and compact by
the Arzela-Ascoli Theorem. A # (0 as 1 € A. Applying Schauder-Tychonoff
Theorem to A™!1L : A — A gives us h € A with Lh = \h. Furthermore
infh =inf A~McMp > K-1. 0O

1.9. Lemma. There is an n € (0,1) so that for f € A one has \™MLM f =
nh+ (1 —n)f" with f' € A.

Proof. Let g = A=M LM f — nh where 7 is to be determined. Provided n||h|| <
K~! we will have g > 0. Assume z; = z/ for all i € [0, m]. We want to pick 7
so that g(z) < B,,g(z'), or equivalently

(%) n(Bmh(z') = h(z)) < BpA™MLM f(2) = A~MLM f(2).

We saw above that L£f1(z) < Bmy1 € Lfi(z') < Bmy1 € Lf1(z') for
any fi € A. Applying this to f; = A=M+1LM=1f gpe has

ATMLM f(2) < Bpgy " ATMLM f(2').

Now h(z) > B;'h(z') because h € A. To get () it is therefore enough to

have
n(Bm — B;ll)h(il) < (Bm - Bm+leba ) /\_M[:Mf(ﬁl)

or
n(Bm — B;;l)”h‘” < (Bm = BrrH-lebam)I\’_l .



