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L. Remarkable Facts of Complex Analysis

A.G. Vitushkin

Translated from the Russian
by P.M. Gauthier
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Introduction

The present article gives a short survey of results in contemporary complex

- analysis and its applications. The material presented is concentrated around
several pivotal facts whose understanding enables one to have a general view of
this area of analysis.

§1. The Continuation Phenomenon

The most impressive fact from complex analysis is the phenomenon of the
continuation of functions (Hartogs, 1906; Poincaré, 1907). We elucidate its
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significance {by an example. If a function f is defined and holomorphic on the
boundary of a ball B in n-dimensional complex space C"(n > 2), then it turns out
that f may be continued to a function holomorphic on the whole ball B.
Analogously"éfor an arbitrary bounded domain whose complement is connected.

any function holomorphic on the boundary of such a domain admits a holo-!

morphic continuation to the domain itself. Let us emphasize that this holds only
for n> 2. In}ﬁ‘thq one dimensional case, this phenomenon clearly, does not

_occur. Indeed, for each set E C! and ‘each point z,eC\E, the function
1/(z—z,) is holomorphic on E but cannot be holomorphically continued to the
point z,. ] - .

This discovery markKed the beginning of the systematic study of functions of
several complex variables. Two fundamental notions, originating in ccnnection
with this propefty of holomorphic functions, are “envelope of holomorphy” and
“domain *of holomorphy”. Let D be a domain or a compact set in C". The
envelope of holomorphy D of the set D is the largest set to which all functions
holomorphic on D extend holomorphicaily. The envelope of holomorphy of a
domain in C" is a domain which in general “cannot fit” into C", but rather is
a multi-sheeted domain over C" (Thullen, 1932). A domain D = C" is called a
domain of holomorphy if D ='D, i.e. if there exists a holomorphic function on D
which cannot be continued to any larger domain. Domains of holomorphy are
also sometimes called holomorphically convex domains. . ;

; The theorem on discs (Hartogs, 1909) gives an idea helpful in constructing the
envelope of holomorphy of a domain: if a sequence of analytic discs, lying in the

(:[omain D, converges towards a disc whose boundary lies in D, then this entire
limit disc lies in the envelope of holomorphy of D. An analytic disc is the
biholomorphic image of a closed disc. The technique of construction of the
é_q'velope of holomorphy of a compact set and in _parti'cular of a surface relies on

.a conglomeration of “attached” discs whose boundaries lie on the given surface
(Bishop, 1965).

* Closely related to the notion of envelope of holomorphy is the notion of hull
with respect to some class or other of functions, for example, the polynomial
hull, the rational hull, etc. The polynomial hull of a set D = C" is the set of all
7eC" for which the following condition holds: for each polynomial P({),

!
|
!

|P(z)| < sup | P
LeD

Every smooth curve is holomorphically convex, ie. its envelope of holo-
morphy coincides with the curve itself. The polynomial hull of a curve is in
general non-trivial. For example, if a smooth curve is closed and without self-
intersections, then its polynomial hull is either trivial or it is a one-dimensional
complex analytic set: whose boundary coincides with the given curve (Wermer,
1958; Bishop, 1962). We recall that a sef in C" is called analytic provided that im

the vicinity of each of its points it is defined by a finite system of equation
{f,(§) = 0}, where {f;} are holomorphic functions. :
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An unsolved problem. Is a set in C" consisting of a finite number of pairwise-
disjoint bails polynomially convex? If the number of balls is at most 3, then the
answer 1s positive; their union is polynomially convex (Kallin, 1964).

.Another variant of the continuation phenomenon is the theorem of
Bogolyubov, nicknamed the edge-of-the-wedge theorem (S.N. Bernstein, 1912;
N.N. Bogolyubov, 1956; . . ., V.V. Zharinov, 1980). Let C* be an acute convex
cone in R" consisting of rays emanating from the origin. Let C~ be the cone *
symmetric to C* with respect to the origin. Let Q be a domainin R", and D* and"
D~ two wedges, i.e. domains in C" of the type

.. D* ={zeC" RezeQ, ImzeC"}
and '
D™ ={zeC"RezeQ, ImzeC}.

"Suppose f is a function holomorphic on D* U D~ and suppose the functions
flp+ and f|,- have boundary values which agree in the sense of distributions
along the edge of these cones, i.e. on the set D® = {zeC™ RezeQ, Imz = 0}.
Then, fhas a holomorphic extension to some neighbourhood of the set D°. The
theorem on C-convex hull (V.S. Vladimirov, 1961) gives an estimate on the size
of this neighbourhood. For example, if @ = R”, then (D* UD°uUD™) =C"

{Bochner, 1937).

The theorem of Bogolyubov has been used to establish several relations in
axiomatic quantum field theory. This theorem also laid the foundations of the
theory of hyperfuncticns (Sato, 1959; Martineau, 1964; . . ., V.V. Napalkov,
1974). For more details, see articles 11, III and volume 8, article IV.

§2. Domains of Holomorphy

Domains of holomorphy are of interest because in such domains one can
solve traditional problems of analysis. In certain of these domains holomorphic
functions have integral representations and admit approximation by poly-
nomials. In domains of holomorphy the Cauchy-Riemann equations are solv-
able; it turns out to be possible to interpolate functions; the problem of division
1s solvable; etc. ‘

Two of the simplest types of domains of holomorphy are polynomial poly-
hedra and strictly pseudoconvex domains. A polynomial polyhedron is 2 domain
given by a system of the type |P;(z)| < 1, j = 1,2, ..., k, where each P;{z)is a
polynomial in z. Polynomial polyhedra were introduced by Weil (1932) and are
also called Weil polyhedra. A domain 1s called strictly pseudoconvex if in the
neighbourhood of each of its boundary points the domain is strictly convex for a
suitable choice of coordinates. Suppose the hypersurface bounding a domain is
given by an equation p(z,7) = 0. If in each point of the hypersurface the Levi
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form of the hypersurface is positive definite, then the domain in question is

2

strictly pseudoconvex (E. Levi, 1910). The Levi form is the form }: 05 A
ik

restricted to the complcx tangent space to the hypersurface at the point z,

The solution of various forms of the problem of Levi concerning the holo-
morphic convexity of strictly pseudoconvex domains remained the central
problem of complex analysis for several decades. Oka (1942) showed that each
strictly pseudoconvex domain is holomorphically convex and conversely each
domain of holomorphy can be exhausted from the interior by domains of this
type. Polynomial polyhedra are easily seen to be polynomially convex and
consequently holomorphically convex.

Boundary points of a domain of holomorphy are not equivalent. A par-
ticularly important role is played by that part of the boundary which is called
the distinguished boundary or the Shilov boundary. The Shilov boundary of a
bounded domain is the smallest closed subset S(D) of the boundary of D such
that, for each function f continuous on the closure of D and holomorphic i in D

dz;-dz,

and for each point z € D the inequality | f(z)| < max | ()| holds For a ball the

Shilov boundary coincides with its topologlcal boundary The Shllov boundary
of the polydisc lz;l < 1,.j=1,2,..., n, is the n-dimensional torus Iz;l = 1,
Jj=12,..., n For domains whose boundary is C?, the Shilov boundary is the
closure of the set of strictly pseudoconvex points (Basener, 1973).

For domains of holomorphy, a strong maximum principle holds. If D is a
domain of holomorphy and f is non-constant, continuous on the closure of D,
holomorphic in D, and attains a local maximum at some point, then that point
lies in S(D) (Rossi, 19614 In simple cases the non-Shilov part of the boundary
has analytic structure; folliates into analytic sets. This was shown, for
example, for domains in C? having C' boundary (N.V. Shcherbina, 1982).

Concerning the topology of domains of holomorphy, it is known that the
homology groups H, of order k are trivial for all k > n. For polynomially
convex domains, the n-th homology group is also trivial (Serre, 1953
Andreotti and Narasimhan, 1962).

Several classical probleéms of analysis are solvable only for domains of
holomorphy. For example a domain is a domain of holomorphy if and only if
each function holomorphic on a complex submanifold of the domain is the
restriction of some function holomorphic on the whole domain (Oka, H. Cartan,
1950). Analogously, a domain is a domain of holomorphy if and only if the
problem of division is solvable (Oka, H. Cartan, 1950). The problem of division is
said to be solvable in the domain D if for any functions f}, . . . , f, holomorphic
in D, and any holomorphic function f in D whose zero set contams (taking into
account multiplicities) the set of common zeros of the functions Jis -« -3 Ji, there

exist functions g, . . ., g,, holomorphrc in D, such that ) f,g; = f We recall
‘ i 7
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that on account of the Weierstrass preparation Theorem (1885), the local
problem of division is always solvable. -

One can define the notion of holomorphic convexity in terms of plurisub-
harmonic functions. A function is called plurisubharmonic if its restriction to
each complex lin¢ is a subharmonic function. A domain D is a domain of
holomorphy if and only if the function —Inp(z) is plurisubharmonic on D,
where p(z) is the distance from the point z to the boundary of D (Lelong, 1945).

For further details see article II and Volume 8, article II. :

§3. Holomorphic Mappings. Classification Problems

By the Riemann Mapping Theorem, in C! any two proper simply-connected
domains are holomorphically equivalent. In the multidimensional case, the
situation is substantially different. For example, a ball and a polydisc are not
equivalent (Reinhardt, 1921). Moreover, almost any two randomly chosen
domains turn out to be non-equivalent (Burns, Shnider, Wells, 1978).

Let us consider the class of strictly pseudoconvex domains having analytic
boundary. In this situation any biholomorphic mapping from one domain onto
another extends to a biholomorphic correspondence between the boundaries
(Fefferman, 1974; S.I. Pinchuk, 1975), and by the same token, the classification
problem for such domains reduces to that of classifying hypersurfaces. There are
two approaches to this problem. The first is geometric; the hypersurface is
characterized by a system of differential-geometric invariants (E. Cartan, 1934;
Tanaka, 1967; Chern, 1974). In the second approach, the characterization is by a
special equation, the so-called normal form (Moser, 1974). Both of these
constructions enable one to distinguish the infinite-dimensional space of pair-
wise non-equivalent analytic hypersurfaces.

In connection with the classification problem, a description of mappings
realizing the equivalence between two surfaces has been obtained. The results
for mappings are described as for the case of functions by properties of
continuation. In the case of mappings a new variant of this phenomenon
appears. For exampie, it turns out that a holomorphic mapping of a sphere to
itself given in a small neighbourhood of some point of the sphere can be
holomorphically extended to the entire sphere and moreover, is in fact a
fractional linear transformation (Poincaré¢, 1907; Alexander, 1974). If the surface
is not spherical, i.e. cannot, by a local change of coordinates, be transformed into
the equation of a sphere, then the germ of such a mapping of the surface into
itself can be continued, not only along the surface, but also, in a direction normal
to the surface. Namely, if a strictly pseudoconvex analytic hypersurface is not
spherical, then the germ of any holomorphic mapping of this surface into itself
has a holomorphic continuation (with an estimate on the norm) to a “large”
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neighbourhood of the center of the germ. Moreover, a guaranteed size, for both
the neighbourhood as well as for the constant estimating the norm, is deter-
mined by the two characteristics of the surface, namely, the parameters of
analyticity of the surface and its constant of non-sphericity (A.G. Vitushkin,
1985). In particular, a surface of the indicated type has a neighbourhood to
which all automorphisms of the surface extend. It is worth emphasizing that in
both examples we have presented, the mappings, in contrast to functions, extend
not only to the envelope of holomorphy of the domain on which they are
defined, but also to some domain lying outside the domain of holomorphy. The
theorem on germs of mappings concludes a lengthy chain of works on holo-
morphic mappings of surfaces (Alexander, 1974; Burns and Shnider, 1976; S.I.
Pinchuk, 1978; V.K. Beloshapka and A.V. Loboda, 1980; V.V. Ezhov and N.G.
Kruzhilin, 1982).

From the Theorem on Germs, it follows that a stablhty group of a surface
(group of its automorphisms which leave a certain point fixed) is compact.
Hence, by Bochner’s theorem on the linearization of a compact group of
automorphisms (1945), one obtains that a stability group of a non-spherical
surface can be linearized, i.e. by choosing appropriate coordinates, every auto-
morphism can be written as a linear transformation (N.G. Kruzhilin and A.V.
Loboda, 1983). Together with the theorem of Poincaré, this means that for each
pair of locally given strictly pseudoconvex analytic hypersurfaces, every map-
ping sending one hypersurface into the other can be written as a fractional-linear
transformation by an appropriate choice of coordinates in the image and
preimage. The problem on the linearization of mappings of surfaces having a
non-positive Levi form remains open. For further details see article IV and
Volume'9, articles V and VI

We have considered here only one aspect of the problem of classification.
Large sections of complex analysis are concerned with the study of invariant
metrics (Kahler, 1933; Carathéodory, 1927; Bergman, 1933; Kobayashi, 1967;
Fefferman, 1974, . . . ); classification of manifolds (Hodge, Kodaira, 1953; Yau,
Siu, 1980; . . . ); description of singularities of complex surfaces (Milnor, 1968;
Brieskorn, 1966; Malgrange, 1974; A.N. Varchenko, 1981;...). -

§4. Integral Representations of Functions

A smooth function in a closed domain D < C can be expressed using the
Cauchy-Green formula

1 1
: f(C) f

0 =5 (C)—l—dCAdC

iz
The first term on the right side is the formula which reproduces a holomorphic
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function in a domain in terms of its boundary values. The second term isolates
the non-holomorphic part of f and yields a solution to the d-equation 2—{ =g
For functions of several varjablcs, there does not exist such a simple and
universal formula, and hence it is suitable to consider the problem of integral
formulas for holomorphnc functions and the solvability of the J-equations
separately. ;

For some classes of domams in C" there are explicit formulas which re-
produce a holomorphic function in terms of its boundary values. For poly-
nomial polyhedra such a formula was obtained by A. Weil (1932); for strictly
pseudaconvex domains, by G.M. Khenkin (1968). Such a formula was given for
the polydisc by Cauchy (1841) and for the ball, by Bochner (1943). There is a
formula of Bochner-Martinelli (1943) for smooth functions on arbitrary
domains having smooth boundary. In this formula, in contrast to the previous
ones, the kernel is not holomorphlc, and this often makes it difficult to apply.
For polynomial polyhedra there is still another formula which distinguishes
itself from the Weil formula and other formulas in that its kernel is not only
holomorphic but also integrable (A.G. Vitushkin, 1968).

Let us introduce the formulas for the polydisc and the ball. If f is holo-
morphic on the closure of the polydisc D", then

e & S
z) A 1 5000008 AE
) (2m> ATy T gy 4
If f is holomorphic on the closed ball B:|z| < 1, then inside the ball,

AR SR .-
z : ! VaB,(l_{lzl T o 5 /
where V is the (2n— 1)-dimensional volume of the sphere dB and dV is its
element of volume.
~ All of the formulas which we have mentioned above differ from one another in
appearance. The appearance of the formula depends on the type of domain.
There is a formula due to Fantappié-Leray (1956) which gives a general scheme

av,

for writing such formulas. Let D be a domain in C}, where z = (2, ..., z,) isa

set of coordinate functions, and let f be holomorphic on the closure of D. Then
' n—1)!

Jy ==L /@

(2mi)" v['h.(_Cx"Zx)'*' sgsotidbatatalds
-kz (‘—1)"‘r1,‘/\dr]1 AR AR A o ABN ATl 5 08 s
=1

where y is a (2n'— 1)-dimensional cycle in the space C; x C; lying over the
boundary of the domain D < C! and covering it once. By choosing suitably the
form of the cycle y, having chosen 7 as a function of {, one can obtain any of
the preceding integral formulas.
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One of the applications of integral formulas is in solving the problem of
; ﬁ(m‘pblation with estimates. If a complex submanifold M of the ball B crpsses
the boundary of the ball transversally, then every function holomorphic and
bounded on M can be continued to a function holomorphic and bounded in the
entire ball (G.M. Khenkin, 1971). The extension is constructed as follows. The
function f(z) for ze M can be written as an integral I(z) of f on the boundary of
M. Moreover, it turns out that the function I(z) is defined for all z€ B, and from
the explicit formula for I(z), one obtains that the extended function f(z) = I (2)is
holomorphic and bounded on B.

The problem on the possibility of division with uniform estimates remains
open. Namely, it is not known whether for each set of functions S AT 5

k
holomorphic and bounded in the ball B = C” and such that inf Y 1501 #0,
{eB j=1

k
there exist functions g, . . ., g, bounded and holomorphic on B such that Y
: =1
f;9; = 1. This is a modified formulation of the famous “corona” problem. In jthe
one dimensional case, this problem was solved by Carleson (1962). The answer is’
positive: in the maximal ideal space for the algebra of bounded holomorphic
functions in the one-dimensional disc, the set of ideals, corresponding to points
of the disc, is everywhere dense.

The above enumerated formulas are for bounded domains. In the present time
analysis on unbounded domains is also flourishing. In particular, integral
formulas have been constructed for such domains. There are explicit formulas
for tubular domains over a cone (Bochner, 1944), on Dyson domains (Jost,
Lehmann, Dyson, 1958; V.S. Vladimirov) and Siegel domains (S.G. Gindikin,
1964). Weighted integral representations for entire' functions have also been
constructed (Berndtsson, 1983). For further resuits see articie Il and Volume 8,
articles I, II and IV.

§5. Approximation of Functions

Let us denote by CH(E) the set of all continuous funcfions on the compact set
E <= C" which are holomorphic at interior points of E. It is clear that functions
which can be uniformly approximated on E with arbitrary accuracy by complex
polynomials or by functions holomorphic on E belong to the class CH (E). When
we speak of the possibility of approximating functions on the compact set E, we
shall mean the following: each function in CH(E) can be approximated uni-
formly with arbitrary precision by functions holomorphic on E.

If a compact set E in C' has a connected complement, then each function

holomorphic on E can be approximated by polynomials (Runge, 1885). This is « .

equivalent to a theorem of Hilbert (1897): on each polynomial polyhedron in C!,
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any holomorphic function can be represented as the sum of a series of
polynomials. Runge’s Theorem reduces the question of the possibility of ap-
proximating functions by polynomials to that of constructing holomorphic ap-
proximations of functions. The criterion for the possibility of approximation by
holomorphic functions (A.G. Vitushkin, 1966) is formulated as follows. The
assertion that each function in CH(E), where E < C', can be uniformly ap-
proximated with arbitrary accuracy by functions holomorphic on E is equiv-
alent to the following condition on the compact set E: for each disc K, «(K\E) =
a(K\E), where E denotes the interior of E, and a(M) is the continuous analytic
capacity of a set M. By definition

ac(M) = sup lim zf(z)|.

Z—-x

The supremum is taken over all compact sets M* = M and all functions f which
are everywhere continuous on C’, bounded in modulus by 1 and holomorphic
outside of M*. In particular, approximation is possible if the inner boundary of
E is empty, ie. each boundary point of E belongs to the boundary of some
complementary component of E. For example, all compact sets with connected
complement belong to this class. The above criterion emerged as a result of a
long series of works on approximation (Walsh, 1926; Hartogs and Rosenthal,
1931; M.A. Lavrentiev, 1934; M.V. Kelcysh, 1945; S.N. Mergelyan 1951 and
others).

The notien of analytic capacity is useful not only in approxnmatlon It appears
along with its analogues in integral estimates (M.S. Mel'nikov, 1967). Such
capacities are used for describing the set of removeable singularities of a function
(Ahlfors, 1947; . . . E.P. Dolzhenko, 1962; . . . Mattila, 1985). Among the un-
solved problems, we draw attention to the problem of the subadditivity of
analytic capacity: is it true that for any two compact sets, the capacity of their
union is no greater than the sum of their capacities?

The integral formula of Weil is a generalization of Hilbert’s construction.
Using this formula, A. Weil (1932) showed that on any polynomially convex
compact set in C”, each holomorphic function can be approximated by poly-
nomials. Thus in C" as in C', polynomial approximation reduces to holo-
morphic approximation. The integral formula of G.M. Khenkin emerged as a
result of attempting to construct holomorphic approximations on arcs. While
developing such approximations, the technique of integral formulas' found
various applications. Nevertheless, the initial question on the possibility of
approximating continuous functions on polynomially convex arcs by poly-
nomials remains open.

The possibility of holomorphnc approximation has been established for the
following cases: arcs having nowhere dense projection on the coordinate planes
(E.M. Chirka, 1965); strictly pseudoconvex domains (G.M. Khenkin, 1968); non
degenerate Weil polyhedra (A.I. Petrosyan, 1970); and C.R.-manifolds
(Baouendi and Tréves, 1981). There are several examples of compact sets on
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which approximation is not possible. Diederich and Fornaess (1975) con-
structed a domain of holomorphy in C2, with C*-boundary, whose closure is
not a compact set of holomorphy, i.e. it cannot be represented as the intersection
of a decreasing sequence of domains of holomorphy. Moreover, on this domain
one can define a holomorphic function, infinitely differentiable up to the
boundary of the domain, which cannot be approximated by functions holo-
morphic on the closure of the domain. :
For related results, see papers IT and IIT.

Above we discussed only the possibility of approximation. There is a lengthy

series of works devoted to the explicit construction of approximating functions. -

In recent years in connection with applications, there has been a renewed
interest in classical rational approximation (continuous fractions, Padé ap-
proximation, etc.). We mention one example concerning rational approximation
in connection with the holomorphic continuation of functions. Let f be holo-

morphic on the ball B = C" and set r(f) = inf sup | f(z) — @(2)|, where the
2 ¢ zeB

infimum is taken over all rational functions ¢ of degree k. Then, if for each g > 0,

lim r,(f)q* = 0, then the global analytic function, generated by the element f,

k— o0

turns out to be single-vélued, 1.6, 1tS domain of existence is single-sheeted over
C" (A.A. Gonchar, 1974). See Vol. 8, paper 11

§6." Isolating the Non-Holomorphic Part of a Function

Sometimes in order to construct a holomorphic function with given
properties, one proceeds as follows. One constructs some smooth function ¢
with the desired properties and then one breaks up ¢ as the sum of two functions
the first of which is holomorphic while the second is in' some sense small. In this
situation, the first function may turn out to be the function we require. The
second term is sought in the form of a solution to the equation df = g, where
0 ='£ dz,+ . o +£ dz,, and g = d¢. This scheme is used for constructing

1 n
functions with prescribed zeros, in approximation, etc. Equations of the type
df = g are called the Cauchy-Riemann equations or d-equations.

Let us consider a more general case of the equation df = g, namely, we shall
take for g a differential (p, g)-form, i.c., a form having degree p > 0 in dz and
degree g > 1 in dz. A necessary condition for the solvability of this equation is
that the form g be d-closed, i.e. dg = 0. This is a necessary compatibility
condition and so it is always assumed to be satisfied. The Cauchy-Riemann
equations are solvable on each domain of holomorphy (Grothendieck,
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Dolbeault, 1953). If the domain is bounded and geL,, then there exists a
solution to the C.-R. equations which lies in L, and is orthogonal to the
subspace of d-closed (p,g— 1)-forms (Morrey, Kohn, Hérmander, 1965). For
strictly pseudoconvex domains there are explicit formulas for the solution of
these equations and estimates on the solution in the uniform norm and in
several other metrics (G.M. Khenkin, Grauert, Lieb, 1969) >

For some simple domains, the question of the possibility of solving the
J-equations with uniform estimates remains open. For example there are no
such estimates on a Siegel domain, also called a generalized unit disc. This is the
domain, in the n?-dimensional space, of square matrices Z determined by the
condition E—Z-Z* > 0, i.c., consisting of matrices Z, for which the indicated
expression is a positive definite matrix.

To every complex manifold is associated a system of cohomology groups
called the Dolbeault cohomology (1953). The Dolbeault group of type (p, g) is the
quotient of the group of d-closed (p,g)-forms by the group of c-exact
(p, g)-forms. In many cases (for example, for compact Kahier manifolds), these
groups can be calculated using de Rham cohomology. However, on domains of
holomorphy, the Dolbeault cohomology is trivial while the de Rham cohom-
ology may be non-trivial.

Interest in the d-equations is also connected to the phenomenon that there is a
wide class of differential equations which by a change of variables are trans-
formed to the J-equations, and in many cases this yields the possibility of
characterizing the solutions of the initial equations in one form or the other. In
the general situation, this change of variables leads to the c-equations on a
surface (the tangential Cauchy—Riemann equations). In these situations the
d-equations are to be understood as follows: f is called a solution to the
equation df = g on the surface M if this equation is fulfilled for all vectors lying
in the complex tangent space to M. Each system of linear differential equations
in general position, with analytic coefficients, and one unknown function, can be
transformed by an analytic change of coordinates to the ¢-equations (of type
(0,1)) on an analytic surface (Rossi, Andreotti, Hill, 1970). Such equations
satisfying the natural compatibility conditions, are locally solvable4Spencer,
V.P. Palamodov, 1968). If the right-hand side is not analytic, then, such
equations are, generally speaking, not solvable. For example, on the sphere in
€2, one can give an infinitely differentiable (0, 1)-form such that the equation
of=g turns out to be not locally solvable (H. Lewy, 1957). Explicit integral
* formulae for solutions to the d-equations yield criteria for solvability (G.M.
Khenkin 1980). Systems of equations with smooth coefficients are, generally
speaking, not reduceable to d-equations (Nirenberg, 1971). If we extend the class
of transformations acting on these equations, namely, by adding homogeneous
simpletic transformations in the cotangent bundle, then almost all linear systems
of equations with analytic coefficients can be reduéed locally to a-equatlons on
standard surfaces (Sato, Kawai, Kashiwara, 1973). For further results see
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