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Preface

I have succumbed to the temptation to write the book for which I searched in vain
while I was a student and young lecturer! This text has evolved from my teaching of
Yale University undergraduate and graduate courses dealing with the transport
of energy, mass, and momentum in chemically reacting fluids, to students of
engineering (chemical, mechanical, aeronautical, etc.) and applied science (e.g.,
materials, geophysics/geochemistry, medicine). The manuscript was put into its
present form with the partial support of EXXON Research and Engineering Co., in
connection with my teaching of the short course: “Introduction to the Fluid
Mechanics of Combustion” (part of the EXXON R & E—Technical Education
Program) and Olin Corporation (in connection with a short course presenting
chemical engineering concepts to chemists). Accordingly, it is written in such a way
as to be accessible to students and practicing scientists whose background has until
now been confined to physical chemistry, classical physics, and/or applied
mathematics. Indeed, the basic principles of these underlying fields are here
generalized and reformulated so as to be able to deal with chemically reacting flow
systems of current and future engineering interest. It is not necessary that the
student have a previous course in fluid mechanics (i.e, momentum transfer by
convection and diffusion); however, in that case the material presented here should
certainly be covered over a period of more than one semester. Reflecting my own
interdisciplinary background and involvement in ME, AeroE, and ChE, a special
effort has been made to write the book in such a way as to make accessible to
engineers educated in one area (say, ME or AeroE) the fruitful approaches and
results of engineers in adjacent disciplines (especially chemical engineering, as in my
treatment of the topics of momentum/energy/mass transport in packed bed
exchangers, and also residence-time distribution analysis). While this is un-
doubtedly not the first such attempt at unifying these engineering fields under one
cover, it may be the first having some of the advantages associated with being
written by a single author. Inevitably, portions of my notation will, at first, appear
unfamiliar and, perhaps, downright cumbersome, but, in most cases, it possesses a
certain logic and suggestiveness which does not tax one’s memory. Thus, it will not
take the reader long to identify a quantity like m’; 3 as the convective mass flow rate
per unit area (say, kg/m?-s) of chemical species 3 evaluated at station (location) (),
etc. (see Nomenclature).

J. W. Gibbs remarked that the role of theory in any science is to find the
perspective from which the subject appears in its simplest form. My purpose is to
present in a simple language but rather general form, principles and approaches that

Xxiii
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have proven to be very fruitful, and that will doubtless remain so in solving the
challenging problems still ahead of us. Thus, while our perspective and scope is
broader than that found in many previous transport textbooks (especially those
intended for undergraduates), the presentation here is deliberately concise and very
selective, leaving many “details” for student exercises. I hope the result provides the
dedicated reader with the fundamentally oriented yet up-to-date background
needed to tackle more advanced, specialized topics. In any event, I am confident it
will put the reader in a position to properly formulate and solve many important
problems involving rates of energy, mass, or momentum transport in fluids that may
be reacting chemically.

The pedagogical choice of combustion for many of the examples is not merely
the result of my own research background. For the reasons outlined below I am
convinced that combustion is an excellent “prototype” for presenting the important
concepts of transport in chemically reacting fluid flows. F irst, it is perhaps the only
area of chemically reacting flows not only common to chemical engineering,
mechanical engineering, and aeronautical engineering, but also familiar in the daily
experience of all applied scientists. Second, while avoiding the dazzling variety of
phases, states, and chemical species encountered in present-day ChE reactor
applications, combustors exhibit all of the important qualitative features of
nonideal, transport-limited, nonisothermal reactors used to synthesize valuable
chemicals—indeed, many chemicals (C,H,, HCI, P,0q, TiO,, etc.) are routinely
produced in “flame” reactors. Finally, it should not be necessary to remind the
reader of the economic importance of the efficient use of our remaining fossil fuels,
and the prevention of combustion-related accidents. Since one of my primary
objectives is to lay a proper foundation for subsequent study and R & D, in this
introductory treatment I have deliberately avoided many topics, more heavily
dependent on empiricism, associated with interacting multiphase transport
(e.g., boiling, bubbling fluidized bed dynamics, etc.). However, as indicated in
Section 2.6.4, the macroscopic conservation conditions (see the Introduction to
Chapter 2) on which we systematically build our understanding of single-phase flow
systems also provide the starting point for rational pseudo-continuum theories of
dispersed multiphase situations. Therefore, it is appropriate that these underlying
principles first be mastered in the context of either single-phase flows, or simple
limiting cases of two-phase flows (e.g., steady flow through isothermal porous
media) or packed beds (Sections 4.7, 5.5.5, and 6.5.1) and diffusion with chemical
reaction in porous solid media (Section 6.4.4). [Study of Section 2.5 can be
postponed without a loss in continuity; however, several of the derived forms of the
conservation equations given here will prove useful in Chapters 4, 5, and 6.]

Also deliberately excluded is explicit material on what might be called the
“systems” aspects of heat/mass exchangers, chemical reactors, and networks
thereof. Thus, while we formulate and exploit the principles on which individual
exchangers and chemical reactors are selected and designed (e.g., sized), explicit
consideration of the economic optimization of specific devices, or the integration of
many separate devices (as in multistage arrangements, or chemical “plants”) would
take us too far from our central themes.
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While Chapters 4, 5, and 6 deal successively with momentum, energy, and
mass transport, we clearly develop, state, and exploit useful quantitative “analogies”
between these transport phenomena, including interrelationships that remain valid
even in the presence of homogeneous or heterogeneous chemical reactions (Sec-
tions 6.5.3 and 6.5.5). Moreover, we include a separate chapter (7) on the use of
transport theory in the systematization and generalization of experimental data on
chemically reacting systems, emphasizing “similitude” methods that go far beyond
ordinary “dimensional analysis.” Because of our present emphasis on the transport
mechanisms of convection and diffusion, which operate for momentum, energy, and
(species) mass, the somewhat “singular” subject of radiative energy transport
(Section 5.9) is only briefly included. While some chemical reactors are intended to
produce photons (e.g., combustion-driven furnaces or chemical lasers), radiation is
often an incidental “by-product.” These factors, together with the “one-way” nature
of the fluid dynamics-radiative energy coupling in most engineering devices (i.e., the
fluid-momentum, energy, and species “density” fields are needed to predict the
radiative behavior, but not vice versa), account for the brevity of this section.
Nevertheless, what little is included is intended to indicate the nature of the radiative
transport problem, and to suggest fruitful alternative approaches to deal with it.

Following a concise “overview” (Chapter 7, Summary) of the main points of
each chapter, many of these principles and methods are then brought together in a
comprehensive numerical example (Chapter 8) intended to also serve as a prototype
(see Appendix 8.1, Recommendations on Problem-Solving) for student solutions to
the novel problems posed at the end of each chapter. These “exercises,” which are
an extremely important part of this textbook from the viewpoint of a student’s
education, have been designed to bring out important qualitative and quantitative
engineering implications of the topics treated in each chapter. Unless otherwise
specified they were developed by the author in connection with his previous
teaching, research, and consulting; however, in some cases (clearly cited), they are
elaborations or revisions of similar problems included in earlier textbooks or
treatises. Several complete solutions are provided to demonstrate the specific use of
seemingly “abstract” concepts, mathematical formulae, and/or graphical or tabular
data provided in each chapter. While our preference is for metric units (m-kg-s, or
cm-g-s), some examples are deliberately included in other commonly used engi-
neering unit systems (for conversion factors, see Appendix 8.6). Most equations
derived or quoted herein are either dimensionless or, if dimensional, stated in a
form in which they are valid in any self-consistent unit set.

In summary, the principles developed and often illustrated here for combus-
tion systems are important not only for the rational design and development of
engineering equipment (e.g., chemical reactors, heat exchangers, mass exchangers)
but also for scientific research involving coupled transport processes and chemical
reaction in flow systems. Moreover, the groundwork is laid for the systematic further
study of more specialized topics (chemical reactor analysis/design, separation
processes, multiphase transport, radiative energy transport, computational fluid
mechanics, combustion science and technology, etc.). Indeed, while developed
primarily for use as a graduate (and undergraduate) textbook in transport processes
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(energy, mass, and momentum), our emphasis on fluids containing molecules
capable of undergoing chemical reaction (e.g., combustion) should make this book
useful in more specialized engineering courses, especially chemical reaction
engineering and combustion fundamentals. Specific sequences of topics in each of
these possible courses are identified in Tables P1 and P2. In each case it is assumed
that the relevant background in the underlying sciences of chemical thermody-
namics and chemical kinetics can be provided via readily available texts in these
classical areas.

By this time the reader will have noted that this text is concerned with the
principles underlying the development of comprehensive rational computer models
of chemically reacting flow systems, rather than the description of recently
developed computer aids to engineering design. Thus, our emphasis is on the use of
fundamental laws in the clever exploitation of a judicious blend of experiment,
analysis, and numerical methods to first develop the requisite understanding, and,
ultimately, to develop mathematical models for the essential portions of engineering
problems involving energy, mass, and/or momentum exchange. In this respect, the
particular problems and solutions I have chosen to explicitly include here should be
regarded merely as instructive “prototypes” for dealing with the challenging new
engineering problems that face us.

Much of my own learning occurs in the process of doing research in the
general area of transport processes in chemically reacting systems. For this reason |
wish to acknowledge the Office of Scientific Research of the U.S. Air Force and
NASA-Lewis Research Laboratories for their financial support of research that has
strongly influenced the orientation and content of this book. I am also indebted to

Table P1 Chemical Reaction Engineering

Topic(s) Textbook Section(s)

Introduction . Ch. 1, Section 6.1

Conservation (Balance) Laws Ch.2

Transport (Diffusion) Laws Ch. 3, Section 6.2

Ideal Plug-Flow Reactors: Empty and Ex. 2.14, 5.11; Sections 6.1.3.1,
Packed (Fixed) Beds 6.4.4,6.7

Ideal (Well-) Stirred Tank Reactors Sections 6.1.3.2, 6.7

Nonideal Reactors: PDE Models/Solution Methods Section 7.4.3; Appendix 8.2

Modular Models of Real Flow Reactors; Stability Sections 6.7.4, 6.7.6, 6.7.7;
and Parametric Sensitivity Ex. 6.12

Diffusion and Chemical Reaction in Porous Media Sections 3.4.4, 6.4.4; Ex. 6.6

Fixed-Bed Mass Transfer Section 6.5.1; Ex. 6.10

Unpacked Duct Wall Reactors Sections 6.1.3.1, 6.5.3; Ex. 6.9,

6.10

Similitude Methods in Systems with Sections 6.4.4, 7.2.3.2, Ex. 6.8, 6.9
Chemical Reaction

Chemical Reactor Scale Model Theory Section 7.2.3

Summary Section 7.4.2
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Topic(s)

Textbook Section(s)

Introduction to Combustion: Scope, Importance
Conservation (Balance) Laws

Transport (Diffusion) Laws
Thermodynamics of Combustion

Chemical Kinetics of Combustion

Premixed Flames (Deflagration Waves)
Detonation Waves

Flame Stabilization (Flashback, Blow-off)
Ignition Energy

Diffusion Flames (Laminar and Turbulent)
Surface-Catalyzed Combustion/Incineration

Fuel Droplet Vaporization and Combustion Theory

Stability and Parametric Sensitivity of Combustors

Modular Mathematical Models of Combustor
Performance

PDE Models of Combustion/Numerical Methods
Scale Model and Similitude Theory in Combustion

Engineering
Heat and Mass Transfer from Combustion Gases

Summary

Ch. 1

Ch.2

Ch. 3

Section 2.5.4; Ex. 2.9 (Solution)

Sections 3.1.2,6.7.6, 7.2.2.2

Sections 4.3.2, 6.5.5.8, 7.2.2.2

Section 4.3.2; Ex. 4.5

Section 7.2.3.2; Ex. 7.4; Fig. 1.2-4

Section 1.1.1; Ex. 7.5

Sections 1.1.2, 1.1.3, 6.5.5, 7.2.3.2¢

Ex. 5.11; Section 6.9.1; Ex. 6.9;
Section 6.5.3

Sections 1.1.3, 6.4.3.3, 6.5.5.7,
7.2.3.2d; Ex. 6.11

Sections 6.7.6, 7.2.3.1

Sections 6.7.4, 6.7.6; Ex. 6.12

Section 7.4.2; Appendix 8.2
Section 7.2.3; Appendix 7.1

Sections 5.8, 5.9.3, 6.5.4; Ch. 8,
Ex.7.1,7.6
Section 7.4.2

many colleagues at Yale University and EXXON Corporation for their helpful
comments, and to the members of Technion—Israel Institute of Technology for their
hospitality during the Fall of 1982, when this manuscript was essentially put into its
present form. However, the author takes full responsibility for any errors of
commission or omission associated with this first edition, and will welcome the
written feedback of students, faculty, and practicing engineers and applied scientists

who use this book.

Daniel E. Rosner
New Haven
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