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Introduction

The National Science Foundation (NSF) and the Cosiglio Nazionale
delle Ricerche (CNR) are supporting the collaboration between a
group of American harmonic analysts and a group of Italian harmonic
analysts. Among the many activities involved in this collaboration
is an annual conference. These are the proceedings of the second
conference held by these two groups (the first conference was held
in April 1980 at the Scuola Normale Superiore, Pisa, Italy), and
the Proceedings appeared as a Supplemento ai Rendiconti del Circolo
Matematico di Palermo , n. 1, 1981. Harmonic analysts from all
over the world are encouraged to attend these meetings whose main
purpose is to bring the various participants up to date on the
most recent research in their field. Both meetings have been very
succesfull and the topics ranged through most of harmonic analysis
and related subjects. These proceedings include many original re-
search articles and three very timely expository articles by A.
Baernstein ( on the Bieberbach conjecture), A.W. Knapp and B. Speh
( on the present status of the theory of the irreducible unitary
representations) and 0.C. McGehee( a discussion concerning the re-
cently solved Littlewood conjecture).

We wish to thank the members of the Department of Mathematics,
University of Minnesoty, and, in particular, Eugene Fabes, who
assumed the principal responsibilities for the organization.

Fulvio Riceci
Guido Weiss
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Status of Classification of Irreducible Unitary Representations

By A. W. Knapp* and B. Speh*

One of the first questions that one would like to answer for
Fourier analysis with a particular group is: "What are all the
irreducible unitary representations of the group?" For semisimple
groups this problem remains unsolved—in fact, very far from solved.
Our intention here is to give a survey of some aspects of what is
known about the problem for semisimple Lie groups. For an earlier
survey of this kind, see [23].

Most of the survey will be of old results, but we shall include
some new facts as well:

1) a useful reformulation of the known criterion [23] for
unitarity of an irreducible admissible representation. This is given
as Theorem 1l.2. Progress to date in applying this or some equivalent
criterion to settle concrete unitarity questions is summarized in §2.

2) a description, given in a diagram in §3, of some
representations of SU(N,2) that we can prove are unitary. The
diagram is complicated enough to illustrate the difficulty of the
general problem yet simple enough to suggest a number of inductive
approaches to a solution. In §4 we summarize briefly some techniques,
including those needed for our result about SU(N,2), for applying
the unitarity criterion to determine whether a particular irreducible
admissible representation is unitary.

3) an extension in §5 of one of the techniques listed in §L,

Supported by National Science Foundation Grant MCS-8001854.



namely use of explicit scalar formulas obtained from intertwining
operators. We have already applied this extended technique to our
own classification [19] of the irreducible unitary representations

of 8U(2,2).

§1. Unitarity criterion

Let G denote a connected semisimple Lie group with a faithful
matrix representation, let K be a maximal compact subgroup, and let
® be the corresponding Cartan involution. Fix a minimal parabolic

subgroup Pmin’ and let Pmin = MminAminNmin be its Langlands

decomposition. Here Mmin is compact, Amin is a vector group,

Nmin is simply-connected nilpotent, and G = KAminNmin is an

Iwasawa decomposition of G. A standard parabolic subgroup P of

G 1s any closed subgroup containing Pmin' There are finitely many

such subgroups P, and each has a Langlands decomposition P = MAN.

Here M 1is noncompact unless P = P,

o and also A C Ami and

n

Nc Nysn® The group P is called cuspidal if rank M = rank(KNM).

Let w be an irreducible unitary representation of G. A
vector v 1is K-finite if the span of w(K)v is finite-dimensional.
Then w defines an irreducible admissible representation of the Lie
algebra of G on the space of K-finite vectors, by [1l]. (We shall
abuse notation and speak of an irreducible admissible representation
of G.) We recall the statement of the Langlands classification [27]
of irreducible admissible representations; the statement below has

been sharpened by the incorporation of a result of Milidic [28].



Langlands classification [27]. The (equivalence classes of)

irreducible admissible representations of G stand in one-one

correspondence with all triples (P,m,v), where

P = MAN is a standard parabolic subgroup

7 is an irreducible "tempered" unitary representation
(equivalence class) of M

v 1is a complex-valued linear functional on the Lie algebra

of A with Re v in the open positive Weyl chamber.

The Langlands representation J(P,m,v) is the unique irreducible

quotient of the induced representation

U(P,m,v) = indﬁAN(v® eV ® 1) (1.1)

and is given as the image of an explicit intertwining operator
A(8P:P:m:v) applied to U(P,m,v).

In (1.1) we have arranged parameters so that unitary
representations induce to unitary representations, and we adopt the
convention that G acts on the left. The intertwining operator
A(6P:P:m:v) is glven by a convergent integral in the context of the
theorem; its general definition and properties may be found in §86-7

of [22]. The representation 7 is assumed "tempered" in the sense

that (m(m)e,y) is in L2+e(M) for every ¢ » O and for all
(KN M)-finite vectors ¢ and . The irreducible tempered
representations were classified in 1976, with details appearing in
[24]; their classification will be combined with the Langlands
classification in Theorem 1.1 below.

An irreducible admissible representation comes from the space of

K-finite vectors of a unitary representation if and only if it is



infinitesimally unitary (in the sense of admitting a Hermitian inner

product such that the Lie algebra of G acts in skew-Hermitian
fashion), and in this case the unitary representation is unique (up to

unitary equivalence) and irreducible.

Corollary [23]. J(P,m,v) 1is infinitesimally unitary if and
only if

(i) the formal symmetry conditions hold: there exists w in K

1

normalizing A with wPw — =6P, wr = w7, and wv = -v, and

(1ii) the Hermitian intertwining operator w(w)R(w)A(8P:P:mw:v), where

3

R(w) denotes right translation of functions by w, is positive

or negative semidefinite.

For connected linear semisimple groups, it is proved in [24]
that the irreducible tempered representations are all induced from

cuspidal parabolic subgroups MlAlNl with a discrete series or limit
of discrete series representation on Ml and a unitary character on
Al; moreover, the 1limit of discrete series representation may be

assumed to be given with nondegenerate data. Conversely such an
induced representation is always tempered, and it is irreducible if
and only if a certain finite group, known as the R group, is
trivial.

Most of the steps needed to extend this result to handle an
irreducible tempered representation m of the (possibly disconnected)
group M obtained from a standard parabolic subgroup of G are
already present in [24], and it is easy to complete the argument.

Then we can substitute for w7 in the Langlands classification, and
we arrive at Theorem 1.1 below (Theorem 5 of [23]). The information

from the R group ensuring that w 1s irreducible needs to be



built into the statement, and we accordingly recall some definitions
from [23]. Let MAN be a cuspidal parabolic subgroup of G, let
W(A:G) De the Weyl group of A, let ot be the Lie algebra of A,
and let o ©Dbe a discrete series or limit of discrete series of M

with nondegenerate data. For each oL root o, let ;g OL(\a) be
s

the Plancherel factor of §7 of [24]. Define

A' = fuseful oo roots a | sv =v and u (v) = 0} (1.2)
a g,a
and
w; y = Weyl group of root system A (1.3)
’

The group W'

is a
5 v is subgroup of

W, , = {w e W(A:G) | wo =

by o and w =v} . (1.4)

We can then reformulate the completeness of the Langlands
classification as Theorem 1.1. The idea is that the R group of the

concealed tempered representation w 1is isomorphic to W& v/W; v
k]
Theorem 1.1 [23]. Let P = MAN be a cuspidal standard
parabolic subgroup of G, let o be a discrete series or limit of
discrete series representation of M with nondegenerate data, and
let v be a complex-valued linear functional on ot with Re v in

the closed positive Weyl chamber. Suppose that Wy = w; g * Then
2 2

the induced representation U(P,0,v) has a unique irreducible
quotient J'(P,0,v), and every irreducible admissible representation

of G is of the form J'(P,0,v) for some such triple (P,o,v).

The effect of Theorem 1.1 is to rewrite the completeness of the

Langlands classification in terms of more manageable representations.



What is lost is the simple criterion for equivalences, but
equivalences can always be sorted out by going back to the earlier
statement. TIf we take these matters into account, then we can
translate into the present language the unitarity criterion given

in the corollary stated earlier.

Theorem 1.2. Let (P,0,v) be such that the irreducible
admissible representation J'(P,o0,v) is defined. Then J'(P,0,v)
is infinitesimally unitary if and only if
(i) there exists w in W(A:G) such that w° = 1, wo = o, and

w = -V, and

(1ii) the standard intertwining operator o(w)AP(w,c,v) of §§7-8 of

[22], when normalized to be pole-free and not identically zero as
o (w) Ap(w,o,v) , (1.5)

is positive or negative semidefinite.
If J'(P,o,v) is infinitesimally unitary, then every w satisfying
(1) is such that the operator (1.5) is positive or negative

semidefinite.

Proof. By way of preliminaries let us introduce notation that
makes clear how to regard J'(P,0,v) as a Langlands quotient. With
P = MAN, 1let m, o, and Mm be the Lie algebras of M, A, and N.

Define oy, to be the span in ot of the vectors H, such that the
ov root a 1is orthogonal to Re v. Let 0L1 be the orthocomplement

of o, in . Define N, to be the centralizer of ot, in n,

1

-n,l to be the natural complement of m, in M, and ‘ml to be

m; = MmO ON, SON, .



Then we can form a corresponding standard parabolic subgroup

P; = MjA;N; of G with
M;A;N; D MAN

and with MA,N, a parabolic subgroup of Ml‘ These definitions
are arranged so that vlaD is imaginary and so that Re(vlot) is
* il

in the open positive Weyl chamber of oti . The representation

-

M
T = ind.Mi*N* (0 ® exp(v lot*) ® 1)

is tempered and, by assumption, irreducible. Then we have

J'(P,U,V) = J(Pl’v’vldﬁ)'

Now we come to the proof of the theorem. The main step will be
to prove that J'(P,0,v) infinitesimally unitary implies that (i)
holds. Once this is done, we can argue as follows: If (i) holds for
some w, then (1.5) is defined (by Lemma 7.9 of [22]), and Corollary

8.7 of [22] shows that the sesquilinear form

(w,v = [ (o(w) Qp(w,0,v)u(k),v(k)) dk (1.6)
K

is invariant (in the sense that the Lie algebra of G acts by skew-

Hermitian operators) and Hermitian. Since wv = -V, we have
w(Re v) = - Re v . (1.7)

From (1.7) it follows that wa, = o, and therefore that woy = o,

Another application of (1.7) then shows that

w(Re v]ml) = - Re VIOLl .



1

Since Re v| is in the open positive Weyl chamber of cLl 5

o

-1

wn, = enq_. Thus wle = ePl. From this equality and Corollary

7.7 of [22], we see that Q@Jw,c,v) can be regarded as a composition

of the Langlands operator A(ePl:Plzvzvl followed by another

O'Ll)
operator. Since the image of the Langlands operator is irreducible,
the image of (1.5) must be equivalent with J'(P,0,v). Consequently
(1.6) descends to a nonzero invariant Hermitian form on J'(P,0,v).
By irreducibility of J'(P,o0,v), such a form is unique up to a
scalar, and J'(P,0,v) is infinitesimally unitary if and only if a
nonzero such form is semidefinite.

Thus the theorem will be proved if we show that J'(P,o,v)
infinitesimally unitary implies that (i) holds. Thus suppose
J'(p,o,v) is infinitesimally unitary. Then so is the equivalent

representation J(Pl,w,vlm ). By the corollary above, there exists
5

w; in the normalizer NK(mﬁ) such that

V|

-1 7
wyPyw;" = 8Py, wym 7, and Ad(wl)vlml = o (1.8)

We shall apply the equivalence criterion for irreducible tempered

representations to the formula WqT = T (see Theorem 4 of [23] or

Theorem 14.2 of [24]. These theorems are stated in the connected case,
but they extend to groups like M without difficulty.) The criterion

says that the equivalence of

M
B
™ = indyy y (0 ® exp vla* ® 1)

and



M
"= indwi(MA*N*)W:-Ll (1,9 ® exp(Aa(wy V)| pq (w, Jt, ® 1)

implies there is an element Wy in Kan with

wleil = ngwél (1.9a)

wlA*wi1 = w2A*w51 (1.9b)

w0 = wyo (1.9¢)

(Ad(wl)v) IAd(wl)% = (Ad(we)\)) lAd(Wz)% . (l-9d)
1

We shall 1list some properties of wé W Since Ws is in Ml’

(1.8) gives
(wélwl)Pl(wélwl)_l =06pP, . (1.10a)

Also w; in NK(nl) and w, in the centralizer ZK(ULl) imply

-1

S -1 S
wy, W, is in NK(oLl), and (1.9b) shows wy"w; is in NK(O‘L*). Thus

1

wé Wy € NK(OL) ﬂNK( o) . (1.10b)

From (1.9c) we have

Wy WO =0 . (1.10c)

By (1.9d) and (1.10b), we have Ad(wélwl) (V|ot, ) = (v which is
*

o\,*)’
imaginary. Hence
Ad(w'lw Y(vl. ) = -(3]. )
2 1 a, o,/

and (1.8) gives



10

ad(uztu v = 5 . (1.104)

-1

Dropping "Ad" for simplicity, let us observe that WoTWy

normalizes the system A' of (1.2). [In fact, o in A' implies

wélwla useful, and we have
-1 -1 1, =
s 4 Vv = (w2 wl)s (wy wl) Vo= - Wywis Y
W WL
2 71
= - wélwlv =V
by two applications of (1.10d). Also
-1 -1
M =7 (v) =u =7 =1 ((w2 Wl) V)
T,y Wyl (w2 wl) o,a
=1 =
= by, o (31 ™N) by (1.10c)
= By, ofv)
since Mo . o depends only on the oy, component and since wélwl
s

fixes vlm’.] Then we can choose w3 in KﬁMl representing a
*

member of W such that
o,V

1 -1 1+

w§ wo wlA'+ = A" . (1.11)

Then it is clear that
= epl (1.12a)

and

aw,) . (1.12p)
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Since W. . € W. . , (1.10¢c) and (1.10d) give

o,v = "o,V
wglwélwlc o (1.12¢)
and
Ad(w3 2 l)v = -V . (1.124)

Let w be the class of w3 w21 w; in W(A:G). Then w° fixes

o and v, by (1l.12c) and (1.12d), and so is in W

5 ,v* Since T is

irreducible (in order to have J'(P,0,v) defined), we have

_ 2 s . 1 2,14+ _ i+
w&,v w& e Thus w° is in Wb,v’ From (1.11), wA'" =A'",

and thus w® = 1. This identity and formulas (1.12c) and (1.12d)

together prove (i) and complete the proof of the theorem.

§2. Progress

The problem of classifying irreducible unitary representations
comes down to deciding which parameters (P,o0,v) in Theorem 1.2
satisfy (i) and (ii) of the theoreﬁ. Here (i) is easy to decide, but
(ii) is often hard. There are several sufficient conditions for
deciding one way or the other, and we shall list a number of them in
§4., It is unlikely that the final answer will be a group-by-group
investigation, but it does give some idea of the nature of the
problem to tell what simple noncompact matrix groups have been
completely settled.

The groups handled so far are the following.



