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Preface

Constraints are a natural means of knowledge representation. This generality
underpins the success with which constraint programming has been applied to a
wide variety of disciplines in academia and industry such as production planning,
communication networks, robotics, and bioinformatics.

This volume contains the extended and reviewed version of a selection of
papers presented at the Joint ERCIM/CoLogNET International Workshop on
Constraint Solving and Constraint Logic Programming (CSCLP 2005), which
was held during June 20-22, 2005 in Uppsala, Sweden.

It also contains papers that were submitted in response to the open call that
followed the workshop. The papers in this volume present research results regard-
ing many aspects of constraint solving and constraint logic programming. This
includes global constraints, search and heuristics, implementations of constraint
systems, and a number of applications.

The editors would like to take the opportunity and thank all the authors who
submitted a paper to this volume, as well as the reviewers for their helpful work.

This volume has been made possible thanks to the support of the European
Research Consortium for Informatics and Mathematics (ERCIM), the European
Network on Computational Logic (CoLogNET), the Swedish Institute of Com-
puter Science (SICS), Science Foundation Ireland (Grant No. 00/PL1/C075),
and the Department of Information Science (DIS) at Uppsala University in
Sweden.

We hope that the present volume is useful for anyone interested in the recent
advances and new trends in constraint programming, constraint solving, problem
modelling, and applications.

March 2006 B. Hnich, M. Carlsson, F. Fages, and F. Rossi
Organizers

CSCLP 2005
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The All Different and Global Cardinality
Constraints on Set, Multiset and Tuple Variables

Claude-Guy Quimper! and Toby Walsh?

' School of Computer Science, University of Waterloo, Canada

cquimper@math.uwaterloo.ca
2 NICTA and UNSW, Sydney, Australia

tw@cse.unsw.edu.au

Abstract. We describe how the propagator for the ALL-DIFFERENT
constraint can be generalized to prune variables whose domains are not
just simple finite domains. We show, for example, how it can be used
to propagate set variables, multiset variables and variables which repre-
sent tuples of values. We also describe how the propagator for the global
cardinality constraint (which is a generalization of the ALL-DIFFERENT
constraint) can be generalized in a similar way. Experiments show that
such propagators can be beneficial in practice, especially when the do-
mains are large.

1 Introduction

Constraint programming has restricted itself largely to finding values for vari-
ables taken from given finite domains. However, we might want to consider vari-
ables whose values have more structure. We might, for instance, want to find a
set of values for a variable [12, 13, 14, 15], a multiset of values for a variable [16],
an ordered tuple of values for a variable, or a string of values for a variable. There
are a number of reasons to want to enrich the type of values taken by a variable.
First, we can reduce the space needed to represent possible domain values. For
example, we can represent the exponential number of subsets for a set variable
with just an upper and lower bound representing possible and definite elements
in the set. Second, we can improve the efficiency of constraint propagators for
such variables by exploiting the structure in the domain. For example, it might
be sufficient to consider each of the possible elements in a set in turn, rather
than the exponential number of subsets. Third, we inherit all the usual benefits
of data abstraction like ease of debugging and code maintenance.

As an example, consider the round robin sports scheduling problem (prob026
in CSPLib). In this problem, we wish to find a game for each slot in the schedule.
Each game is a pair of teams. There are a number of constraints that the sched-
ule needs to satisfy including that all games are different from each other. We
therefore would like a propagator which works on an ALL-DIFFERENT constraint
posted on variables whose values are pairs (binary tuples). In this paper, we con-
sider how to implement such constraints efficiently and effectively. We show how
two of the most important constraint propagators, those for the ALL-DIFFERENT

B. Hnich et al. (Eds.): CSCLP 2005, LNAI 3978, pp. 1-13, 2006.
(© Springer-Verlag Berlin Heidelberg 2006



2 C.-G. Quimper and T. Walsh

and the global cardinality constraint (gcc) can be extended to deal with variables
whose values are sets, multisets or tuples.

2 Propagators for the ALL-DIFFERENT Constraint

Propagating the ALL-DIFFERENT constraint consists of detecting the values in
the variable domains that cannot be part of an assignment satisfying the con-
straint. To design his propagator, Leconte [18] introduced the concept of Hall
set based on Hall’s work [1].

Definition 1. A Hall set is a set H of values such that the number of variables
whose domain is contained in H is equal to the cardinality of H. More formally,
H is a Hall set if and only if |H| = |{x; | dom(z;) C H}|.

Consider the following example.

Example 1. Let dom(z,) = {3,4}, dom(z2) = {3,4}, and dom(z3) = {2,4,5}
be three variable domains subject to an ALL-DIFFERENT constraint. The set
H = {3,4} is a Hall set since it contains two elements and the two variable
domains dom(z;) and dom(zs) are contained in H.

In Example 1, variables x; and z2 must be assigned to values 3 and 4, making
these two values unavailable for other variables. Therefore, value 4 should be
removed from the domain of x3.

To enforce domain consistency, it is necessary and sufficient to detect every
Hall set H and remove its values from the domains that are not fully contained
in H. This is exactly what Régin’s propagator [4] does using matching theory
to detect Hall sets. Leconte [18], Puget [20], Lépez-Ortiz et al. [19] use simpler
ways to detect Hall intervals in order to achieve weaker consistencies.

3 Beyond Integer Variables

A propagator designed for integer variables can be applied to any type of variable
whose domain can be enumerated. For instance, let the following variables be
sets whose domains are expressed by a set of required values and a set of allowed
values.
{} € 51,852,83,54 C{1,2} and {} C S5, 56 C {2,3}
Variable domains can be expanded as follows:

S1,85. S5, 8: € {{}, {1}, {2}, {1,2}} and S5, Ss € {{}, {2}, {3}, {2,3}}

And then by enforcing GAC on the ALL-DIFFERENT constraint, we obtain

S1,859,53,5 € {{} {1}{2}{12}} and S5, S¢ € {{3}, {2,3}}
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We can now convert the domains back to their initial representation.
{} € 51, 82,853,854 C {1,2} and {3} C S5, Ss C {2,3}

This technique always works but is not tractable in general since variable
domains might have exponential size. For instance, the domain of {}€.5; C
{1,...,n} contains 2" elements. The following important lemma allows us to
ignore such variables and focus just on those with “small” domains.

Lemma 1. Let n be the number of variables and let F be a set of variables
whose domains are not contained in any Hall set. Let x; € F be a variable whose
domain contains more than n — |F| values. Then dom(z;) is not contained in
any Hall set.

Proof. The largest Hall set can contain the domain of n — |F| variables and
therefore has at most n — |F| values. If |dom(z;)] > n — |F|, then dom(z;)
cannot be contained in any Hall set. a

Using Lemma 1, we can iterate through the variables and append to a set F
those whose domain cannot be contained in a Hall set. A propagator for the
ALL-DIFFERENT constraint can prune the domains not in F and find all Hall
sets. Values in Hall sets can then be removed from the variable domains in
F'. This technique ensures that domains larger than n do not slow down the
propagation. Algorithm 1 exhibits the process for a set of (possibly non-integer)
variables X.

Algorithm 1. ALL-DIFFERENT propagator for variables with large domains

F—0
Sort variables such that |[dom(z;)| > |dom(x;41)]
for z; € X do
1 | if |[dom(zi)| > n— |F| then F « FU {z;}
2 Expand domains of variables in X — F.
Find values H belonging to a Hall set and propagate the All-Different constraint
on variables X — F'.
for z; € F do
| dom(z;) « dom(z;) — H;

3 Collapse domains of variables in X — F.

To apply our new techniques, three conditions must be satisfied by the rep-
resentation of the variables:

1. Computing the size of the domain must be tractable (Line 1).
2. Domains must be efficiently enumerable (Line 2).
3. Domains must be efficiently computed from an enumeration of values (Line 3).

The next sections describe how different representations of domains for set,
multiset and tuple variables can meet these three conditions.



4 C.-G. Quimper and T. Walsh
4 ALL-DIFFERENT on Sets

Several representations of domains have been suggested for set variables. We
show how their cardinality can be computed and their domain enumerated ef-
ficiently. One of the most common representations for a set are the required
elements [b and the allowed elements ub, with any set S satisfying (b C .S C ub
belongs to the domain [12,14]. The number of sets in the domain is given by
2ub=Ibl We can enumerate all these sets simply by enumerating all subsets of
ub — b and adding them to the elements from [b. A set can be represented as
a binary vector where each element is associated to a bit. A bit equals 1 if its
corresponding element is in the set and equals 0 if its corresponding element is
not in the set. Enumerating all subsets of ub — [b is reduced to the problem of
enumerating all binary vectors between 0 and 2/“*~!l exclusively which can be
done in O(2"*=11) steps, i.e. O(|dom(S;)|) steps.

In order to exclude from the domain undesired sets, one can also add a car-
dinality variable [3]. The domain of a set variable is therefore expressed by
dom(S;) = {S | b C S C ub,|S| € dom(C)} where C' is an integer vari-
able. We assume that C' is consistent with b and wb, i.e. min(C') >= |lb| and
max(C') <= |ub|. The size of the domain is given by Equation 1 where (Z) is the
binomial coefficient.

|dom(S;)| = Z (|;Lb_—|[lbﬁ|> (1)

jec

The binomial coefficients can efficiently be computed as explained in Chapter
6.1 of [10]. The identity (k+l) = H(Z) can be particularly useful to compute
the summation when the domain of C'is an interval. The number of steps required
to compute (S:)| is bounded by O(|dom(C)|).

Algorithm 2 enumerates all combinations of ¢ elements chosen from elements
0 to n — 1. BEach element i in a combination is mapped to the i*" element in
ub — Ib. By enumerating all ¢-combinations for ¢ € dom(C') to which we add the
required elements [b, we enumerate all sets in |[dom(S;)|. Algorithm 2 has a time
complexity of O(t + ('})). Since we call it for each t € dom(C'), the total time
complexity simplifies to O(max(|ub — 1b], |dom(S;)|)).

Sadler and Gervet [7] suggest adding a lexicographic ordering constraint to the
domain description. This gives more expressiveness to the domain representation
and can eliminate more undesired sets. that We say that S; < S holds if S
comes before Sy in a lexicographical order. The new domain representation now
involves two lexicographic bounds [ and u.

dom(S;) ={S|IbCT S Cub|S|=C,1<S<u} (2)

Knuth [8] represents all subsets of a set using a binomial tree like the one in
Figure 1. The empty set is the root of the tree to which we can add elements
by branching to a child. One can list all sets in lexicographical order by visiting
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Algorithm 2. Enumerate the (r) combinations of ¢ elements between 0 and n — 1.
(Source: Algorithm T, Knuth [8] p.5)

ci—j—1,Vj1<j5<t
Ct+1 < N
Ct42 0
repeat
visit ¢, ¢ce-1,..., 01
g1
while ¢; +1 = ¢j4+; do

’\(’j“‘]‘—l
J=g+1

Cj < Cj +1

until j > ¢

o .. ... ... 1<18)
1,00 < 8;
Fig. 1. Binomial tree representing the domain § C S; C {0,1,2,3}, 1 < |Si| < 2, and

{1,0} < S; < {3,0}

the tree from left to right with a depth-first-search (DFS). We clearly sec that
the lexicographic constraints are orthogonal to the cardinality constraints.

Based on the binomial tree, we compute, level by level, the number of sets
that belong to the domain. Notice that sets at level k have cardinality k. A set
in the variable domain can be encoded with a binary vector of size lub — 1b]
where each bit is associated to a potential element in ub — [b. A bit set to
one indicates the element belongs to the set while a bit set to zero means that
the element does not belong to the set. The number of sets of cardinality &
in the domain is equal to the number of binary vectors with k bits set to one
and that lexicographically lie between [ and u. Let [, ..., u1] be the binary
representation of the lexicographic upper bound wu. Assuming (2) = 0 for all
negative values of a, function C([uyy,,... ,u1], k) returns the number of binary
vectors that are lexicographically smaller than or equal to u and that have k
bits set to one.
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m

1—1 p
C[$m, - - -,51), k) = ; s (k s Sj) +6(s, k) (3)

8([Smy- -5 81], k) = {1 i3y s =k and 50 =0

(2

0 otherwise
Lemma 2. Fquation 3 is correct.

Proof. We prove correctness by induction on m. For m = 1, Equation 3 holds
with both k = 0 and k = 1. Suppose the equation holds for m, we want to prove
it also holds for m + 1. We have

C([Sm,+1 PR 751]7 k) = Sm+1 <7Z) + C([Snu ~~~~~ S 1]7 k— 5m,+1) (5)

If s;41 = 0, the lexicographic constraint is the same as if we only consider
the m first bits. We therefore have C([sm+1,--.,51],k) = C([$m,-..,s1], k). If
Sm+1 = 1, C(s, k) returns (76') which corresponds to the number of vectors with
k bits set to 1 and the (m + 1) bit set to zero plus C([sm,...,s1],k — 1)
which corresponds to the number of vectors with k bits set to 1 including the
(m 4 1) bit. Recursion 5 is therefore correct. Solving this recursion results in
Equation 3. a

Let a and b be respectively binary vectors associated to the lexicographical
bounds | and u where bits associated to the required elements [b are omitted.
We refer by a — 1 to the binary vector that precedes a in the lexicographic order.
The size of the domain is given by the following equation.

[dom(S;)| = > (C(b, k) = Cla—1,k))
keC

Function C' can be evaluated in O(|ub—1b|) steps. The size of domain dom(.S;)
therefore requires O(Jub — 1b||C|) steps to compute. Enumerating can also pro-
ceede level by level without taking into account the required elements b since
they belong to all sets in the domain. The first set on level £ can be obtained
from the lexicographic lower bound [. If |I| # k, we have to find the first set
" of cardinality k that is lexicographically greater than [. If |I| < k, we simply
add to set [ the k — |l| smallest elements in ub — Ib — [. Suppose |l| > k and
consider the binary representation of 1. Let p be the k*" heaviest bit set to 1 in
[. We add one to bit p and propagate carries and we set all bits before p to 0.
We obtain a bit vector I’ representing a set with no more than k elements. If
[I'| <k, we add the first k — |I’| elements in ub— b — 1’ to I’ and obtain the first
set of cardinality k.

Once the first set at level £ has been computed, subsequent sets can be ob-
tained using Algorithm 2. Obtaining the first set of each level costs O(|dom(C')]
|ub — Ib]) and cumulative calls to Algorithm 2 cost O(Ziedom((,') i+ |[dom(S)]).

Enumerating the domain therefore requires O(|dom(C')||ub—1b|+|dom(.S)

) steps.
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5 ALL-DIFFERENT on Tuples

A tuple ¢ is an ordered sequence of n elements that allows multiple occurrences.
Like sets, there are different ways to represent the domain of a tuple. The most
common way is simply by associating an integer variable to each of the tuple
components. A tuple of size n is therefore represented by n integer variables
TlyeeeyXp.

To apply an ALL-DIFFERENT constraint to a set of tuples, a common solution
is to create an integer variable ¢ for each tuple. If each component z; ranges from
0 to ¢; exclusively, we add the following channeling constraint between tuple ¢
and its components.

n n
t=((((x1c2 +a2)cs + x3)ca +24)...)CH + Ty = Z 5 H cj
i j=i+1

This technique suffers from either inefficient or ineffective channeling between
variable ¢ and the components x;. Most constraint libraries enforce bound con-
sistency on ¢. A modification to the domain of x; does not affect ¢ if the bounds
of dom(x;) remain unchanged. Conversely, even if all tuples encoded in dom(t)
have z; # v, value v will most often not be removed from dom(z;). On the other
hand, enforcing domain consistency typically requires O(n*) steps where k is the
size of the tuple.

To address this issue, one can define a tuple variable whose domain is defined
by the domains of its components.

dom(t) = dom(z;) x ... x dom(x,,)

The size of such a domain is given by the following equation which can be
computed in O(n) steps.

n

|[dom(t)| = H |dom(z;)]

=1

The domain of a tuple variable can be enumerated using Algorithm 3. As-
suming the domain of all component variables have the same size, Algorithm 3
runs in O(|dom(t)|) which is optimal.

As Sadler and Gervet [7] did for sets, we can add lexicographical bounds to
tuples in order to better express the values the domain contains. Let [ and u be
these lexicographical bounds.

dom(t) = {t | t[i] € dom(x;),l <t < u}
Let idx(v,x) be the number of values smaller than v in the domain of the

integer variable x. More formally, idz(v,z) = {w € dom(z) | w < v}|. As-
suming idx (v, z) has a running time complexity of O(log(|dom(z)|)), the size of



