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FOREWORD

This volume contains a selection of papers presented at the 7th symposium on
differential geometry and differential equations(=DD7), which took place at Nankai
Institute of Mathematics, Tianjin, China, June 23 — July 5, 1986. The subject was
partial differential equations. It was a culmination of a year-long activity = in
1985-1986 at the institute. A list of the other papers presented at the symposium
can be found at the end of this volume, some of which will be published elsewhere.

For the record I would like to give a list of the preceding DD-Symposia as fol-

lows:

Subject Date. . Place Publication

DDl Differential Aug. 18- Beijing, Proceedings of the 1980 Beijing Symposium

geometry and gept. 21, CGhina on Differential Geometry and Differential
differential 1980 Equations, Science Press, Beijing, China,
equations 1982

DD2 Differential Aug. 20- Shanghai-  Proceedings of the 1981 Symposium on Dif-
geometry Sept.. i3 Hefel, ferential Geometry and Differential Equa-
1981 China tions, Shanghai-Hefei, Science Press,

Beijing, China, 1984

DD3 Partial dif-  Aug. 23- Changchun, Proceedings of the 1982 Changchun Sympo-
ferential Sept.. 16, China sium on Differential Geometry and Differen-
equations 1982 tial Equations, Science Press, Beijing,

China, 1986

DD4 Ordinary dif- Aug. 29- Beijing, Proceedings of the 1983.Beijing Symposium

ferential Sept. 10, China on Differential Geometry and Differential
equations 1983 Equations, Science Press, Beijing, China,
1986
DD5 Computation Aug. 13- Beijing, Proceedings of the 1984 Beijing Symposium
on partial aug. 17, China on Differential Geometry and Differential
differential 1984 Equations, Science Press, Beijing, China,
equations 1985
DD6 Differential Jun.’ 21- Shanghai, Differential Geometry and Differential
geometry July: 64 China Equations, Proceedings, Shanghai 1985,
1985 Lecture Notes in Mathematics 1255,

Springer-Verlag 1987

S.S. Chern
June 1987



Editorial board

S. Agmon

F. Almgren

R.W. Bedls

Chang Kung-ching

Chi Min-you

Huang Yumin

Sun Hesheng

J.E. Taylor

A.J. Tromba

Wang Rou-hwai

Zou Yulin

Institute of Math. and Computer Science, The Hebrew Univ.
of Jerusalem, Givat Ram. 91904, Jerusalem, Israel
Dept. of Math., Princeton Univ., Fine Hall-Box 37,
Princeton, N.J. 08544, USA

Deptf of Math., Yale Univ., Box 2155, Yale Station,
New Haven, Conn. 06520, USA : :

Dept. of Math., Beijing Univ., Beijing, China

Dept. of Math., Wuhan Univ., Wuhan, Hubei, China

Dept. of Math. Nankai Univ., Tianjin, China

Institute of Applied Physics and Computational Math.,
Beijing, China

Math. Dept., Rutgers Univ., New Brunswick, N.J. 08904,
USA

Dept. of Math., Univ. of California, Santa Cruz,

CA. 95064, USA

Dept. of Math., Jilin Univ., Changchun, Jilin, China
Institute of Applied Physics and Computational Math.,

Beijing, China

:
)
:
i
]




10.

11.

A TABLE OF CONTENTS OF DD7 SYMPOSIUM ON PARTIAL
DIFFERENTIAL EQUATIONS — A SELECTION OF PAPERS

F.Almgren, W.Browder & E.H.Lieb

Co-area, Liquid Crystals and Minimal Surfaces

Richard Beals :
Non-elliptic Problems and Complex Analysis

Chen Shuxing :

Smoothness of Shock Front Solutions for System of Conservation Laws.

Chen Yazhe :

On Degenerate Monge—-Ampere Equations.

Fu Hong-Yuan :
Initial and Boundary Problems for the Degenerate or Singular Systems

of Filtration Type.

Huang Yumin :
On Interior Regularity of Solutions of a Class of Hypoelliptic

Differential Equations.

Jin Zhiren :
A Counterexample to the Yamabe Problem for Complete Noncompact

Manifolds.

Li Huilai :

Free Boundary Problem for Degenerate Parabolic Equations.

Li Ta-tsien & Zhao Yanchun :
Global Perturbation of the Riemann Problem for the System of

One-dimensional Isentropic Flow.

Qiu Qing-jiu & Qian Si-xin
Analysis of C° Singularities for a Class of Operators with Varying

Multiple Characteristics.

Tan Yongji :
An Inverse Problem for Nonlocal Elliptic BVP and Resistivity

Identificating.

23

38

61

69

84

93

102

141



Vi

125 Jedan E,Taylor : 160
Local Ellipticity of F and Regularity of F Minimizing Currents.

13. Friedrich Tomi & A.J.Tromba : 174

A Geometric Proof of the Mumford Compactness Theorem.

14. Wang Guanglie : 182

Harnack Inequalities for Functions in de Giorgi Parabolic Class.

15. Wang Zhiqiang : 202
Equivariant Morse Theory for Isolated Critical Orbits and Its

Applications to Nonlinear Problems.

16. Wu Fantong : 224
A Class Diffractive Boundary Value Problem with Multiple
Characteristic.

17. Wu Lancheng : 240

Existence, Uniqueness and Regularity of the Minimizer of a Certain

Functional.

18 Yan Zigian 295
Everywhere Regularity for Solutions to Quasilinear Elliptic Systems.

19. Zhang Kewei : 262
On the Dirichlet Problem of a Class of Elliptic Systems.

20. Zhou Yulin & Guo Boling : 278
Initial Value Problems for a Nonlinear Singular Integral-Differential

Equation of Deep Water.




CO-AREA, LIQUID CRYSTALS, AND MINIMAL SURFACES!
F. Almgren, W. Browder, and E. H. Lieb

Department of Mathematics, Princeton University
Princeton, New Jersey 08544, USA

Abstract. Oriented n area minimizing surfaces (integral currents) in M™*" can be approximated
by level sets (slices) of nearly m-energy minimizing mappings M™*" — S™ with essential but
controlled discontinuities. This gives new perspective on multiplicity, regularity, and computation

questions in least area surface theory.

In this paper we introduce a collection of ideas showing relations between co-area, liquid
crystals, area minimizing surfaces, and energy minimizing mappings. We state various theorems

and sketch several proofs. A full treatment of these ideas is deferred to another paper.

Problems inspired by liquid crystal geometries.? Suppose 0 is a region in 3 dimensional
space R® and f maps Q to the unit 2 dimensional sphere S? in R3. Such an f is a unit vectorfield

in £ to which we can associate an ‘energy’
1
e = (g2) [ 1psiracs;

here Df is the differential of f and |Df|? is the square of its Euclidean norm—in terms of coordi-

nates,
8018 2
Bf"
D =
S Z Z ( oz, )
for each x. The factor 1/87 which equals 1 divided by twice the area of S? is a useful normalizing

constant. It is straightforward to show the existence of f’s of least energy for given boundary

values (in an appropriate function space).

Such boundary value problems have been associated with liquid crystals.® In this context, a
“liquid crystal” in a container 1 is a fluid containing long rod like molecules whose directions are
specified by a unit vectorfield. These molecules have a preferred alignment relative to each other—

in the present case the preferred alignment is parallel. If we imagine the molecule orientations along

1 This research was supported in part by grants from the National Science Foundation
2 The research which led to the present paper began as an investigation of a possible equality

between infimums of m-energy and the n area of area minimizing n dimensional area minimizing
manifolds in R™*" suggested in section VIII(C) of the paper, Harmonic maps with defects [BCL)]
by H. Brezis, J-M. Coron, and E. Lieb. Although the specific estimates suggested there do not
hold (by virtue of counterexamples [MF|[W 1][YL]) their general thrust does manifest itself in the

results of the present paper.
3 See, for example, the discussion by R. Hardt, D. Kinderlehrer, and M. Luskin in [HKL].



910 to be fixed (perhaps by suitably etching container walls) then interior parallel alignment may
not be possible. In one model the system is assumed to have ‘free energy’ given by our function &
and the crystal geometry studied is that which minimizies this free energy.

If QO is the unit ball and f(z) = z for |z| = 1, then there is no continuous extension of these
boundary values to the interior; indeed the unique least energy f is given by setting f(z) = z/|z|
for each z. It turns out that this singularity is representative, and the general theorem is that
least energy f’s exist and are smooth except at isolated points p of discontinuity where ‘tangential
structure’ is +z/|z| (up to a rotation), e.g. f has local degree equal to £1 [SU] [BCL VII].

As a further step towards an understanding of the geometry of of energy minimizing f’s one
might seek estimates on the number of points of discontinuity which such an f can have—e.g. if the
boundary values are not to wild must the number of points of discontinuity be not too big?4 An
alternative problem to this is to seek a lower bound on the energy when the points of discontinuity
are prescribed together with the local degrees of the mapping being sought. This question has a
surprisingly simple answer as follows.

THEOREM. Suppose py, ... ,pn are points in R® and dy,... ,dy € Z are the prescribed degrees
with va:l d; = 0. Let inf £ denote the infimum of the energies of (say, smooth) mappings from
R3 ~ {p1,... ,pn} to S? which map to the ‘south pole’ outside some bounded region in R? and
which, for each i, map small spheres around p; to S? with degree d;. Then inf £ equals the least
mass M(T) of integral 1 currents T in R® with

aT = _di[pi].

=1

This fact (stated in slightly different language) is one of the central results of [BCL]. We
would like to sketch a proof in two parts: first by showing that inf £ < inf M (with the obvious
meanings) and then by showing that inf M < inf €. The proof of the first part follows [BCL] while
the second part is new. It is in this second part that the coarea formula makes its appearance.

Proof that inf £ < inf M. The first inequality is proved by construction as illustrated in
Figure 1. We there represent that case in which N equals 2 and p, and p; are distinct points with
dy = —1and d; = +1. We choose and fix a smooth curve C connecting these two points and orient
C by a smoothly varying unit tangent vector field ¢ which points away from p; and towards p;.
The associated 1 dimensional integral current is T' = t(C,1,¢) and its mass M(T) is the length
of C since the density specified is everywhere equal to 1.5 We now choose (somewhat arbitrarily)

4 As it turns out, away from the boundary of £, the number of these points is bounded a priori

independent of boundary values.
5 Formally, a 1 current such as T is a linear functional on smooth differential 1 forms in R

¢ is such a 1 form then
T(e) = [ (s(a) ola)) k'
zeC

To each point p in R3 is associated the 0 dimensional current [p] which maps the smooth function
1 to the number 1(p). See Appendix A.4.
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Figure 1. Construction of a mapping f (indicated by dashed arrows) from R2 to S? having
energy £(f) not much greater than the length of the curve C connecting the points p; and p,.
Small disks normal to C map by f to cover S? once in a nearly conformal way. This implies that
small spheres around p; map to S? with degree —1 while small spheres around p; map with degree
+1. The 1 current t(C, 1, ¢) is the slice (E®, f, p) of the Euclidean 3 current E2 by the mapping
f and the ‘north pole’ p of S2.



and fix two smoothly varying unit normal vector fields n1 and 79 along C which are perpendicular
to each other and for which, at each point z of C, the 3-vector n;(z) A n2(z) A ¢(z) equals the
orienting 3-vector e; A e, A es for R3. These two vector fields are a ‘framing’ of the normal bundle
of C.

We then construct a mapping « of R? onto the unit 2 sphere S? which is a slight modification
of the inverse to stereographic projection. To construct such ~ we fix a huge radius R in R? and
require: (i) if |y| < R then ~(y) is that point in S? which maps to y under stereographic projection
S2 — R? from the south pole q of S2; (ii) if |y| > 2R then 7(y) = q; (iii) for R < |y| < 2R, ()
is suitably interpolated. See Appendix A.2.

Next we choose some smoothly varying (and very small) radius function é on C which vanishes

only at the endpoints p;and p,.

Finally, as our mapping f from R? to S? with which to estimate & (f) we specify the following.
If p in R® can be written p = z + sn;(z) + tnz(z) for some z in C and some s and ¢ with

82 + 12 < §(z)?, then
2Rs 2Rt
f(p) =’7(m,m)-

Otherwise, f(p) = q. We leave it as an exercise to the reader to use the fact that 4 is conformal
for |y| < R to check that £(f) very nearly equals M(T); see Appendix A.2. The remainder of the
proof that inf £ < inf M is also left to the reader.

Proof that inf M < inf £. Suppose that f does map R2 to S%, has degree d; at each p;,
and maps to the south pole outside some bounded region. From dimensional considerations one
would expect that for most points w in S? the inverse image f~!{w} would be a collection of
curves connecting the various points p;,... ,pny. H. Federer’s coarea formula is what enables one

to quantify this idea; see Appendix A.5. This formula asserts

/ N‘(f"{w})dN2w=/ Jof (z) dL3z;
weS?

zER?®

here X! and ¥? are Hausdorff’s 1 and 2 dimensional measures in R® and L2 is Lebesgue’s 3 di-
mensional measure for R%. Also J;f(z) here denotes the 2 dimensional Jacobian of f at z and a
key observation (as noted in [BCL]) is that J; f(z) is always less than or equal to half of |[Df(z)[?
with equality only if the differential mapping Df(z): R® — Tan(S2, f(z)) is maximally conformal;
see Appendix A.1.3. Also central to the present analysis is the manner in which the curves f~!{w}
connect the various points p;,...,py and how they relate to the prescribed degrees d;,... ,dN.
This connectivity is naturally measured by the current structure of these f~!{w}’s which comes
from the slicing theory for currents; see Appendix A.5. To set this up we regard R® as the Eu-
clidean current E® (oriented by the 3 vector e; A ez Aez). The slice of E3 by the map f at the

point w in S? is the current

(B3, f,w) = t(f~ {w},1,¢);

the meanings here are the same as for the current T discussed above. A check of orientations and

FIAR R T

‘!



degrees shows that
N
A(E®,f,w) =) kilnl;
i=1
compare with our construction of 1, and n; above. It follows immediately that

47 inf M(T) = ¥*(S?) inf M(T)

< M((E®, f,w)) d¥*w
weS?

:/ I drs
Ra

- (%) /Rs |Df|?dL3.

This finishes the proof that inf M < inf £.

First Generalization. Since the methods used in the proofs of the two inequalities are
quite general one might correctly suspect that considerable generalization is possible. Suppose,
for example, we fix B = {py,...,pn} as a general boundary set and let 7 be the family of
those mappings f of R® to S? which are locally Lipschitzian except possibly on B, which map
to the southpole outside some bounded region, and which have finite energy. Since deformations
of mappings in % do not alter discrete combinatorial structures we are led to study properties of
homotopy classes (%) of mappings in Fo—it is most useful here if our homotopies [0,1]xR3 — §?

are permitted to have isolated point discontinuties; see Appendix A.3.

Our conditions about mapping degrees above generalize to requirements about degrees d(f,S)
of f on general integral 2 dimensional cycles S in R2 ~ B. It turns out that such a degree d(f, S)

depends only on the homotopy class of f and on the homology class of S.

It also turns out that the relative homology classes of the slices (E3, f,w) depend only on

the homotopy class [f] of f. We denote this homology class by s[f].

The Kronecker index is a pairing between 2 dimensional cycles S in R® ~ B and 1 currents T
having boundary in B. In general the Kronecker index k(S, T') is the sum over points of intersection

of S and T of an index of relative orientations; see Appendix A.6

These various ideas are related in the following theorem.

THEOREM. The diagram below is commutative. Furthermore, s is an isomorphism, and d and

k are injections.

Hl(Ra, B; Z)
I1(%) Lk

Hom(H,(R® ~ B,Z),2)



Here
slf] = “[f Y {w}]” = [(E?, f,w)] = the integral homology class of the 1 current slice;
d|f]|S] = = the degree of f on the 2 cycle S;
k[T][S] = k(S,T) = the Kronecker Index of the 2 cycle S and the 1 current 7.
Our relations between energy minimization and area minimization become the following.

THEOREM. Suppose that P is an integral 1 current in R® with the support of P in B. Suppose
also that TZ has least mass among all integral 1 currents which are homologous to P over the
integers Z and that T® has least mass among all integral 1 currents which are homologous to P

over the real numbers R. Then

M(T%) = inf{&(f):s[S] = [P]}

and

M(T®) = inf{€(f):d|f] = k[P}}.

Moreover, M(T%) = M(T®R) (because of our special situation).

Further generalizations. The essential ingredients of the analyses above remain, for exam-
ple, if R® is replaced by a general m + n dimensional manifold M (without boundary) which is
smooth, compact, and oriented (or M = R™*"), and B is replaced by a sufficiently nice (possibly
empty) compact subset of M of dimension n — 1. To study n dimensional integral currents in M
having boundary in B we consider mappings f of M to a sphere of the complementary dimension
m. The spaces 7 and 7 of such mappings and the homotopy classes II(¥) are specified in sections
A.3.1 and A.3.2 of the Appendix. Some discontinuities are essential.® It seems worthwhile to con-
sider three different energies £;, €2, and &3 for mappings in %. £; is a normalization of the usual
‘n energy’ of mappings, €3 is a normalized Jacobian integral associated with the coarea formula,
and £, is an intermediate energy; see Appendix A.3.2. As indicated above, mapping degrees and
the Kronecker index have general meanings which are set forth in sections A.6 and A.7 of the
Appendix. These various ideas are related as the following theorem shows.

THEOREM. The diagram of mappings below is well defined and is commutative. In partic-

ular, the images of d and k and j in Hom(H,,(M ~ B,Z),Z) are the same. Furthermore, s is an

6 Supposem =2andn =5and M = R7, and B is a smoothly embedded copy of 2 dimensional
complex projective space CP(2). Then there are no continuous mappings f from the complement
of B to S? such that small 2 spheres S which link B once map to S? with degree one. Any f
satisfying such a linking condition for general position S’s near B must have interior discontinuities

of dimension at least 3.
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isomorphism.
H,.(M,B;Z) — H,(M,B;R)
Sk \ ¢ T4
(%) Lk c[Hn(M, B; Z)]
N\ d '
Hom(H»(M ~ B,Z),2)
Here

s|f] = “|f~{p}]” = [{{M]./.p)] = the integral homology class of the n current slice;
d|f]|S] = d(f,S) = the degree of f on the m cycle S;

k|[T)|S] = k(5,T) = the Kronecker index of the m cycle § and the n current T

¢ is induced by the coefficient inclusion Z — R;

i ie the inclusion; and

7 is defined by commutivity.

We defer proof of this theorem to our fuller treatment of this subject. The natural setting and

generality of such relationships are still under investigation.

The relations between energy minimization and area minimization then become the following.

MAIN THEOREM. Suppose P is an integral current in M with the support of P contained
in B so that the integral homology class [P] of P belongs to Hn(M, B; Z). Let TZ be an integral
current of least mass among all integral currents belonging to the same integral homology class
as P in H,(M, B,Z), and let TR be an integral current of least mass among all integral currents

belonging to the same real homology class as P in Hn(M, B,R). Then
M(T?%) = inf{&1(f): s|f] = [P]} = inf{€2(f): s[f] = [P]} = inf{€s(f): s(f] = [P]}
and

M(T®) = inf{£,(f): d|f] = k[P]} = inf{&(f): d[f] = k[P]} = inf{€s(f): d[f] = k[P]}.

7 Suppose m = 2 and n = 1 and M is a 3 dimensional real projective space RP(3) and
T = t(N,1,¢); here N is a 1 dimensional real projective space RP(1) sitting in RP(3) in the
usual way and ¢ is some orientation function. Since T is not a boundary while 2T is, we conclude
that the homology class

[T € Hi(M,0; Z) = Z,
is not the O class although k(S,T) = O for each 2 cycle S in M. In particular, the mapping k is

generally not an injection.



In general, of course, M(T®) < M(TZ%). Although we again defer complete proofs to our
fuller treatment of this subject, it does seem useful to sketch some of the main ideas.

Proof of the inequality “inf £ < inf M”. The proof here is again by construction. We will
indicate the main ingredients in a special case. Suppose, say, M = R™*", B is polyhedral, and
T is an integral n current which is mass minimizing subject to some appropriate constraints as in
the Main Theorem above. We will construct a mapping f: R™*" — S™ in the relevant homotopy
class such that &;(f),&2(f), and £3(f) are nearly equal and are not much bigger that M(T). By
virtue of the Strong Approximation Theorem for integral currents [FH1 4.2.20] we can modify T
slightly to become simplicial with only a slight increase in mass.

Suppose then that we can express

M
T=Zt(A:,Za,§a)

a=1

as a ‘simplicial’ integral current (with the obvious interpretation ). For each k = 0,... ,n we denote
by K the collection of closed k simplexes which occur as k dimensional faces of n simplexes among
the A%’s. We then choose numbers 0 < §, << §,,_; << §,,_3 << ... << 8y << 1 and define sets
No,Ny,... ,N, in R™*" by setting

No = {z:dist(z,UK)p) < 6o}
and, for each k = 1,... ,n set
Ni =— {z:dist(z, UKk) < 6,;} ~ (Nk_l UNg_2U...U No).

We assume that 6o, ... , 6, have been chosen so that the distinct components of each Ny correspond

to distinct k simplexes in Kj.

We now define mappings fnt1,fn,-.-,fo = f as follows.

First, the mapping fo41:R™*" ~ (N, U...U Ng) — S™ is defined by setting fr11(z) = q
for each z.

Second, the mapping fu:R™*™ ~ (N,_; U...U Ny) — S™ is constructed geometrically in
virtually the same manner as the mapping ¢ in the example A.8 in the Appendix. Details are left
to the reader.

Third, the mapping fr_1:R™*™ ~ (Np_2 U...U Ny) — S™ is constructed geometrically
in a manner virtually identical with the construction of the mapping fs,, of example A.8 of the
Appendix (with &,r replaced by 6,/2,6,_; respectively there). The mapping f,_; is Lipschitz
across parts of n — 1 simplexes which do not lie in B and is discontinuous on those n — 1 simplexes
which contain part of T.

Assuming fn41, fn,. .-, k+1 have been constructed we define

fk:Rm+n ~ (Nk_l 7 PSS UNO) — 8™



as follows. Each point v in Nx ~ (Nk—; U...U Ng) can be written uniquely in the form v =
vo + (v — vo) where vg is the unique closest point in UK to v and |v — vg| < 8. If v # vo we note

that
-0

v
v; = vo + bk IU—V()I

) € dmn(fic)

and we set fx(v) = fk+1(v1). A direct extension of the estimates used for the example A.8 of the
Appendix shows that the energies & (f), £2(f), and €3(f) very nearly equal M(T).

Proof of the inequality “infM < inf £”. The argument here is a direct extension of the

corresponding argument given above and is left to the reader.

Remarks.

(1) One of the main reasons for analyzing relations between the energy of mappings and the
area of currents is that it provides a way to study n dimensional area minimizing integral currents
(whose geometry is not specified ahead of time) by studying functions and integrals over the given
ambient manifold. This seems the first such scheme which works in general codimensions. For real
currents, however, differential forms play a role roughly analogous to that of our function spaces F;
in this regard see, for example, the paper of H. Federer, Real flat chains, cochains, and variational
problems [F2 4.10(4), 4.11(2)]. Incidentally, in the language of [F2 5.12, page 400], examples show
that the equation in question there is not always true under the alternative hypotheses of [F2
5.10].

(2) Suppose C consists of smooth simple closed curves in R® oriented by ¢. Suppose also for
positive integers v we have reasonable mappings f, from the complement of C in R? to the circle
S! with the property that small circles which link C once are mapped to S* by f, with degree v.
Because of the dimensions we have

) = b= ) (%) [ 1ps.1az

If f, is nearly &; energy minimizing then for most w’s in S! the slice
T, (w) = (E3, f,, w) € I,(R?)

will be defined with 4T, (w) = t(C, v, ¢) and will be nearly mass minimizing. H. Parks, in his
memoir, Explicit determination of area minimizing hypersurfaces, II [PH], used a similar energy
for mappings to the real numbers R (instead of to S!) and was able to exhibit an algorithm for
finding area minimizing surfaces. The technique used by Parks requires that C' be extreme, i.e.
that it lie on the boundary of its convex hull. The analysis of our paper on the other hand applies
to any collection of curves which, for example, may be knotted or linked in any way. One of our
hopes is to develop a method of computation analogous to that of Parks.

(3) Suppose that C and the mappings f, have the same meaning as in (2) above. If 8 denotes
the usual (multiple-valued radian) angle function on S! then df as a well defined closed 1-form



10

whose pullbacks f2dé give closed 1 forms on the complement of C in R? with |fidé| = |Df,|. For
fixed zo in the complement of C we define functions g, mapping the complement of C to S! by

requiring that

0og,(z) =aof,(z0)+/f3da (mod 27)
s 4

for each z (with the obvious meanings); here y(z) denotes any oriented path in the complement
of C starting at zo and ending at z. It is immediate to check that g, = f, for each v. If we write
v = X u for some A and p and define hy(z) in S! by requiring

80 hy(z) =L(i> f8d8 (mod 27)

for 7 as above. The mapping h) maps small circles with the same degrees as does f). Taking

u# = v we readily conclude, for example, that
inf{M(T): 8T =t(C, v,¢)} = v-inf{M(T): 8T = t(C, 1, ¢)}

for each v. This estimate implies that integral and real mass minimizing 2 currents having boundary
t(C, 1,¢) have the same masses [F2 5.8]; although this has been known for some time, the
present proof by factoring mappings seems new and simpler. This fact (and our proof ) extend to
n — 1 dimensional boundaries in general manifolds M of dimension n + 1 with, for example, the
property that each 1 cycle is a boundary. There are counterexamples to such equalities in higher
codimensions given first by L. C. Young [YL] and later by F. Morgan [MF] and B. White (W1].
How badly such an equality can fail remains an important open question. It is not even known,

for example, if the number
inf{M(S)/M(T):S,T € I(R* R*) are mass minimizing with 0 # 85 = 28T}

is positive; note, however, the isoperimetric inequality [A1 2.6].

(4) Suppose M is a complex submanifold of some complex projective space CP(n) (or, more
generally, M is a Kahler manifold). Then any complex analytic (meromorphic) function f from
M to the Riemann Sphere CP(1) = S? has integral current slices which are absolutely mass
minimizing in their integral homology classes [F1 5.4.19]. Such f’s are thus necessarily maximally
conformal and minimize each of the energies £;, £, and €3 among functions in the same homotopy

classes.

(5) In the context of this paper, if the mass minimizing current T being sought happens to
be unique then most slices of nearly minimizing mappings will be close to that current. In a sense
this describes the asymptotic behavior of a sequence {fi}+ of mappings in % converging towards

energy minimization; in particular, the real currents

(o L
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must converge to T as k — oo. If m = 2 then the energy £, is Dirichlet’s integral which is widely
studied in the general theory of harmonic mappings between manifolds pioneered by J. Eells and

J. Sampson.

In any codimension m each n dimensional mass minimizing integral current is a regular min-
imal submanifold except possibly on a singular set of dimension not exceeding n — 2 as shown by
F. Almgren in [A2]. It is not yet clear to what extent the present new setup will provide new tools
for study of the regularity and singularity properties of mass minimizing integral currents. This
could be one of its most important potential uses.

APPENDIX

When not otherwise specified we follow the general terminology of pages 669-671 of H. Fed-
erer’s treatise, Geometric Measure Theory [F1] or the newer standardized terminology of the 1984
AMS Summer Research Institute in Geometric Measure Theory and the Calculus of Variations as
summarized in pages 124-130 of F. Almgren’s paper, Deformations and multiple-valued functions
(A1),

A.1 Terminology.

A.1.1 We fix positive integers m and n and suppose that M is an m + n dimensional sub-
manifold (without boundary) of RY (some N) which is smooth, compact, and oriented by the
continuous unit (m + n)-vectorfield £: M — A, ,RV; alternatively M = R™*" with standard or-
thonormal basis vectors e, ... ,em,4n and orienting (m+n)-vector e; A...Aepm+n. We also suppose
that B is a finite (possibly empty) union of various (curvilinear) n — 1 simplexes Ay, Aj,... ,A;
associated with some smooth triangulation of M.

A.1.2 We denote by S™ the unit sphere in R x R™ = R!*™ with its usual orientation given
by the unit m-vectorfield o: S™ — A,,R!*™; in particular, for each w € 8™ c R!*™ = A;R!*™,
o(w) = *w. It is convenient to let z,y;,...,ym denote the usual orthonormal coordinates for
R X R™ and also let p,ey,... ,6m be the associated orthonormal basis vectors. In particular,
o(p) =*p=€;A... ANEy,. We regard p as the ‘north pole’ of S™. The ‘south pole’ is q = —p.
We denote by o the differential m form (the ‘volume form’) on S™ dual to o.

A.1.3 If L is a linear mapping R™*" — R™ then the polar decomposition theorem guarantees

the existence of orthonormal coordinates for R™*" and R™ with respect to which L has the matrix

representation
Yoo 0 0 0
0 A 0 o 0
L=
0
00 Ao 0

with A\; > A, > ... > A,, > 0. In these coordinates we can express the Euclidean norm |L| of L as

\L|= (,\§+,\§+...+,\3,,)§,



