omputer Systems

SE C.PD N DY E=D § LT N

fanley Warfurﬂ

PEPPERDINE UNIVERSITY

JONES AND BARTLETT PUBLISHERS

Sudbury, Massachusetts .
BOSTON TORONTO LONDON SINGAPO&&"

World Headquarters Jones and Bartlett Publishers Jones and Bartlett Publishers
Jones and Bartlett Publishers Canada International

40 Tall Pine Drive 2406 Nikanna Road Barb House, Barb Mews
Sudbury, MA 01776 Mississauga, ON L5C 2W6 London W6 7PA
978-443-5000 CANADA UK

info@jbpub.com

www.jbpub.com

ISBN: 0-7637-1633-2
Copyright © 2002 by Jones and Bartlett Publishers, Inc.

All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any
form, electronic or mechanical, including photocopying, recording, or any information storage or retrieval system, with-
out written permission from the copyright owner.

Library of Congress Cataloging-in-Publication Data

Warford, J. Stanley, 1944-
Computer systems / J. Stanley warford.—2nd e
p. cm.
ISBN 0-7637-1633-2
1. Computer systems. 1. Title.

QA76.W2372 2001
004—dc21 00-067851

Production Credits

Senior Acquisitions Editor: Michael Stranz
Development and Product Manager: Amy Rose
Production Assistant: Tara McCormick

Composition: Northeast Compositors, Inc)
Production Coordination: Trillium Project Management
Cover Design: Kristin Ohlin

Printing and Binding: Courier Westford

Cover printing: John Pow Company

This book was typeset in QuarkXpress 4.1 on a Macintosh G4. The font families used were Times, Helvetica, and
Courier. The first printing was printed on 50# Finch Opaque.

Printed in the United States of America
06 05 04 03 02 10987654321

Addr. Status
Opcode Mnemonic Meaning modes bits
00000 STOP stop execution U
00001 LOADR Riic=0Oprnd idsx NZ
00010 STORER Oprad i s="R dsx
00011 ADDR Rioe=="R o+ OQprnd idsx NZvC
00100 SUBR K = R - Oprnd idsx NzZVC
00101 ANDR R := R AND Oprnd idsx NZ
00110 ORR Rie:== R OR Oprnd idsx NZ
00111 NOTR R := NOT R U NZ
01000 ASLR gl = mest significant bit; U NZzZVC
R = arithmetic shift left R
01001 ASRR C := least significant bit; U NZzC
R 1= arithmeflc shitt right R
01010 LDBYTR Rin= byte Oprnd idsx NZ
01011 STBYTR byte Oprnd := R dsx
01100 LOADB B = Opknd idsx NZ
01101 ADDSP SP := SP + Oprnd T NZVC
01110 BR BC = Oprnd a3
DT BRLE if NzZvC = £ then PC Oprnd ix
10000 BRLT if NZVC = < then PC Oprnd e
10001 BREQ if NZvVC = = then PC Oprnd e
10010 BRNE if NZvVC = # then PC Oprnd b <
10011 BRGE if NZVC = =z then PC Oprnd ix
10100 BRGT if NZVC = > then PC Oprnd ix
10101 BRV if V=1 then PC := Oprnd 1%
10110 BRC if C=1 then PC := Gprnd Vi
10111 COMPR R - Oprnd idsx NzVC
11000 JSR SP =8B = 1%
Mem[SP] := PC;
PC := Oprnd
11001 RTS PC :=-Mem[SP]; U
SP := SP £ 2
11010 RTI return from interrupt U
o ia B CHARI byte Oprnd := input dsx
11100 CHARO output := byte Oprnd idsx
11104 DECI Oprnd :='inpot dsx NZV
113110 DECO output += Oprnd idsx
13101 HEXO output := Oprnd idsx

Pep/7 Instruction Set.

et

L,, This book is dedicated to my moi:her,
Susan Warford.

Preface

Computer Systems offers a clear, detailed, step-by-step exposition of the central
ideas in computer organization, assembly language, and computer architecture. The
book is based in large part on a virtual computer, Pep/7, which is designed to teach
the basic concepts of the classic von Neumann machine. The strength of this
approach is that the central concepts of computer science are taught without getting
entangled in the many irrelevant details that often accompany such courses. This
approach also provides a foundation that encourages students to think about the
underlying themes of computer science. Breadth is achieved by emphasizing com-
puter science topics that are related to, but not usually included in, the treatment of
hardware and its associated software.

Summary of Contents

Computers operate at several levels of abstraction; programming at a high level of
abstraction is only part of the story. This book presents a unified concept of com-
puter systems based on the level structure of Figure P.1.

The book is divided into six parts corresponding to six of the seven levels of
Figure P.1:

Level App7 Applications

Level HOL6 High-order languages
Level ISA3 Machine

Level Asmb5 Assembly

Level OS4 Operating system
Level LG1 Logic gate

The text generally presents the levels top-down, from the highest to the lowest.
Level ISA3, the instruction set architecture level, is discussed before Level Asmb5,
the assembly level, for pedagogical reasons. In this one instance, it is more natural

Application
7
level
High-order
6
language level
Assembly
5
level
I
Operating system
4
level
I
Instruction set
3 .
architecture level
Microcode
2
level
Logic gate
1
level
Figure P.1

The level structure of a typical
computer system.

vi Preface

to revert temporarily to a bottom-up approach so that the building blocks of the
lower level will be in hand for construction of the higher level.

Level App7 Level App7 is a single chapter on applications programs. It presents
the idea of levels of abstraction and establishes the framework for the remainder of
the book. A few concepts of relational databases are presented as an example of a
typical computer application. It is assumed that students have experience with text
editors or word processors.

Level Hol6 Level Hol6 consists of one chapter, which reviews the C++ pro-
gramming language. The chapter assumes that the student has experience in some
imperative language, not necessarily C++, such as Pascal or C. Advanced features
of C++, including object-oriented concepts, are avoided. The instructor can readily
translate the C++ examples to other common Level Hol6 languages if necessary.

The topic of recursion is treated in this chapter because it depends on the mech-
anism of memory allocation on the run-time stack. A fairly detailed explanation is
given on the details of the memory allocation process for function calls, because
this mechanism is revisited at a lower level of abstraction later in the book.

Level ISA3 Level ISA3 is the instruction set architecture level. Its two chapters
describe Pep/7, a virtual computer designed to illustrate computer concepts. The
Pep/7 computer is a classical von Neumann machine. The CPU contains an accu-
mulator, an index register, a base register, a program counter, a stack pointer, and
an instruction register. It has four addressing modes: immediate, direct, stack rela-
tive, and indexed. The Pep/7 operating system, in simulated read-only memory
(ROM), can load and execute programs in hexadecimal format from students’ text
files. Students run short programs on the Pep/7 simulator and learn that executing a
store instruction to ROM does not change the memory value.

Students learn the fundamentals of information representation and computer
organization at the bit level. Because a central theme of this book is the relationship
of the levels to one another, the Pep/7 chapters show the relationship between the
ASCII representation (Level ISA3) and C++ variables of type char (Level Hol6).
They also show the relationship between two’s complement representation (Level
ISA3) and C++ variables of type int (Level Hol6).

Level Asmb5 Level Asmb5 is the assembly level. The text presents the concept
of the assembler as a translator between two levels—assembly and machine. It
introduces Level Asmb5 symbols and the symbol table.

The unified approach really comes to play here. Chapters 5 and 6 present the
compiler as a translator from a high-order language to assembly language. Previ-
ously, students learned a specific Level Hol6 language, C++, and a specific von
Neumann machine, Pep/7. These chapters continue the theme of relationships
between the levels by showing the correspondence between (a) assignment state-
ments at Level Hol6 and load/store instructions at Level Asmb5, (b) loops and if
statements at Level Hol6 and branching instructions at Level Asmb5, (c) arrays at

Level Hol6 and indexed addressing at Level Asmb5, (d) procedure calls at Level
" Hol6 and the run-time stack at Level Asmb5, (e) function and procedure parameters
at Level Hol6 and stack-relative addressing at Level Asmb5, and (f) switch state-
ments at Level Hol6 and jump tables at Level Asmb5.

The beauty of the unified approach is that the text can implement the examples
from the C++ chapter at this lower level. For example, the run-time stack illustrated
in the recursive examples of Chapter 2 corresponds directly to the hardware stack in
Pep/7 main memory. Students gain an understanding of the compilation process by
translating manually between the two levels.

This approach provides a natural setting for the discussion of central issues in
computer science. For example, the book presents structured programming at Level
Hol6 versus the possibility of unstructured programming at Level Asmb5. It dis-
cusses the goto controversy and the structured programming/efficiency tradeoff,
giving concrete examples from languages at the two levels.

Chapter 7, Language Translation Principles, introduces students to computer
science theory. Now that students know intuitively how to translate from a high-
level language to assembly language, we pose the fundamental question underlying
all of computing: What can be automated? The theory naturally fits in here because
students now know what a compiler (an automated translator) must do. They learn
about parsing and finite state machines—deterministic and nondeterministic—in the
context of recognizing C++ and Pep/7 assembly language tokens. This chapter
includes an automatic translator between two small languages, which illustrates lexi-
cal analysis, parsing, and code generation. The lexical analyzer is an implementation
of a finite state machine. What could be a more natural setting for the theory?

Level OS4 Level OS4 consists of two chapters on operating systems. Chapter 8
is a description of process management. Two sections, one on loaders and another
on interrupt handlers, illustrate the concepts with the Pep/7 operating system. Three
instructions have unimplemented opcodes that generate software interrupts. The
operating system stores the process control block of the user’s running process on
the system stack, and the interrupt service routine interprets the instruction. The
classic state transition diagram for running and waiting processes in an operating
system is thus reinforced with a specific implementation of a suspended process.
The chapter concludes with a description of concurrent processes and deadlocks.
Chapter 9 describes storage management, both main memory and disk memory.

Level LG1 Level LGI uses two chapters to present combinational networks and
sequential networks. Chapter 10 emphasizes the importance of the mathematical
foundation of computer science by starting with the axioms of boolean algebra. It
shows the relationship between boolean algebra and logic gates, and then describes
some common SSI and MSI logic devices. Chapter 11 illustrates the fundamental
concept of a finite state machine through the state transition diagrams of sequential
circuits. It concludes with the construction of the data section of the Pep/7 com-
puter. The same machine model is thus used from the C++ level to the logic gate
level, providing a complete, unifying picture of the entire system.

Preface

Vii

viii Preface

Use in a Course

This book offers such broad coverage that instructors may wish to omit some of the
material when designing the course. Chapters 1-5 should be considered core. Selec-
tions can be made from Chapters 6 through 11.

In the book, Chapters 1-5 must be covered sequentially. Chapters 6 (Compil-
ing to the Assembly Level) and 7 (Language Translation Principles) can be covered
in either order. I often skip ahead to Chapter 7 to initiate a large software project,
writing an assembler for a subset of Pep/7 assembly language, so students will have
sufficient time to complete it during the semester. Chapter 11 (Sequential Net-
works) is obviously dependent on Chapter 10 (Combinational Networks), but nei-
ther depends on Chapter 9 (Storage Management), which may be omitted. Figure
P.2, a chapter dependency graph, summarizes the possible chapter omissions.

e Figure P.2

A chapter dependency graph.

e

Support Materials
The support material listed below is available from the publisher’s web site

http://computersystems.jbpub.com

Pep/7 Assembler and Simulator The Pep/7 machine is available for MSWin-
dows, MacOS, and Unix systems. The assembler features
« an integrated text editor for the MSWindows and MacOS versions,

 error messages in red type that are inserted within the source code at the
place where the error is detected,

« student-friendly machine language object code in hexadecimal format,
« the ability to code directly in machine language, bypassing the assembler,

« the ability to redefine the mnemonics for the unimplemented opcodes that
trigger synchronous interrupts.

The simulator features

e simulated ROM that is not altered by load instructions,

 a small operating system burned into simulated ROM that includes a loader
and an interrupt handler system,

 an integrated debugger that allows for break points, single step execution,
CPU tracing, and memory tracing,

* the option to trace an application, the loader, or the operating system in any
combination,

« a user-defined upper limit on the statement execution count to recover from
endless loops,

« the ability to modify the operating system by designing new interrupt han-
dlers for the unimplemented opcodes.

Computer Systems Figures Every figure in the book is enlarged and repro-
duced to be used as transparency masters for overhead projection.

Solutions Manual Solutions to selected exercises are provided in an appendix.
Solutions to the remaining exercises are available to instructors who adopt the
book. For security reasons, the solutions are available only in hardcopy form
directly from the publisher.

Changes to the Second Edition

In addition to many small changes, updates, and corrections throughout the text,
this second edition differs in three respects from the first.

A new section in Chapter 3 describes the IEEE floating point standard. The
description is unusually thorough, and includes the special values NaN, infinity,
and denormalized numbers. Problems are added in Chapter 8 for students to
implement floating point instructions using the interrupt mechanism of the virtual
hardware.

The installed memory of Pep/7 has been increased to 32 Mbytes from 4 Mbytes
for Pep/6.

The C++ coding style is now more conventional than in the first edition. The
readability of the code is enhanced at the expense of lengthier program listings.

"Harmes, Douglas and Berque, Dave, Using a PDP-11/10 to Teach Content and History in Com-
puter Organization Courses, SIGCSE Bulletin-Conference proceedings of the thirty-second

SIGCSE Technical Symposium on Computer Science Education (2001), 209-213.

Preface

ix

X Preface

-~ Computing Curricula 2001

As this edition was going to press the new Curriculum 2001 guidelines for Com-
puter Science had not yet been finalized. Preliminary versions of the curriculum
report present a taxonomy of bodies of knowledge with a specified core. Computer
Systems applies to the category Architecture and Organization (AR) and covers
practically all of the core topics from the AR body of knowledge. The AR core
areas from the preliminary report, together with the chapters from this text that
cover each area, are

ARI1. Digital logic and digital systems, Chapters 10, 11

AR2. Machine level representation of data, Chapter 3

AR3. Assembly level machine organization, Chapters 4, 5, 6
AR4. Memory system organization and architecture, Chapter 9
ARS. Interfacing and communication, Chapter 8

ARG6. Functional organization, Chapter 11

AR7. Multiprocessing and alternative architectures, Chapter 8

- Acknowledgments

Pep/1 had 16 instructions, one accumulator, and one addressing mode. Pep/2 added
indexed addressing. John Vannoy wrote both simulators in ALGOL W. Pep/3 had
32 instructions and was written in Pascal as a student software project by Steve
Dimse, Russ Hughes, Kazuo Ishikawa, Nancy Brunet, and Yvonne Smith. In an
early review, Harold Stone suggested many improvements to the Pep/3 architecture
that were incorporated into Pep/4 and carried into Pep/5 and Pep/6. Pep/4 had spe-
cial stack instructions, simulated ROM, and software interrupts. Pep/5 was a more
orthogonal design, allowing any instruction to use any addressing mode. John
Rooker wrote the Pep/4 system and an early version of Pep/5. Gerry St. Romain
implemented a MacOS version and an MS-DOS version. Pep/6 simplified indexed
addressing and includes the complete set of conditional branch instructions. John
Webb and Greg Kaestle wrote the trace facility using the BlackBox development
system. Pep/7 increased the installed memory from 4 Mbytes to 32 Mbytes.

More than any other book, Tanenbaum’s Structured Computer Organization]
has influenced this text. This text extends the level structure of Tanenbaum’s book
by adding the high-order programming level and the applications level at the top.

The following reviewers of the manuscript and users of the previous edition
shaped the final product significantly: Wayne P. Bailey, Fadi Deek, William
Decker, Peter Drexel, Gerald S. Eisman, Victoria Evans, Myers Foreman, David
Garnick, Ephraim P. Glinert, Dave Hanscom, Michael Hennessy, Michael Johnson,
Andrew Malton, Robert Martin, Richard H. Mercer, Randy Molmen, John Motil,

Peter Ng, Bernard Nudel, Carolyn Oberlink, Wolfgang Pelz, James F. Peters III,
James C. Pleasant, Eleanor Quinlan, Glenn A. Richard, David Rosser, Scott Smith,
Harold S. Stone, J. Peter Weston, and Norman E. Wright.

Thanks especially to Gerry St. Romain and John Motil, who provided, based
on their experience, literally hundreds of ideas that were incorporated into the text.
Scott Smith from the State University of New York at Plattsburgh wrote the side-
bars. Joe Piasentin provided artistic consultation.

At Jones and Bartlett Publishers, Editor J. Michael Stranz and Production Edi-
tor Amy Rose provided valuable support and were a true joy to work with (espe-
cially because of our mutual love of chocolate). Kristin Ohlin captured the flavor of
the book with her striking cover design.

I am fortunate to be at an institution that is committed to excellence in under-
graduate education. Pepperdine University, in the person of Ken Perrin, provided
the creative environment and the professional support in which the idea behind this
project was able to evolve. My wife, Ann, provided endless personal support. To
her I owe an apology for the time this project has taken, and my greatest thanks.

Stan Warford
Malibu, California

Preface

Xi

APPENDIX

Pep/7 Architecture

Figure A.l

This appendix summarizes the architecture of the Pep/7 computer. L

0 1 2 3 4 5 6 7 8 9 A B c D E F
0_ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
11 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
21 32 33 34 as 36 37 38 39 40 41 42 43 44 45 46 47
3| 48 49 50 a3l 52 53 54 55 56 57 58 59 60 61 62 63
4 | 64 65 66 67 68 69 70 71 72 73 74 5 76 77 78 79
5! 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
6| 96 97 98 99 100 101 102 103 104 105 106 107 108. 109 110 111
@112 113 114 115 116 117 - 118 119 120 121 122 123 124 125 126 |27
81128 129 130 131 132. 133 134 135 136 137 138 139 140 141 142 143
9 1144 145 146 147 148 149 150 151 152 153 154 455 156 157 ..158 159
A 1160 161 162 . 163 164 165 166 167 168 169 170 171 172 ..173 174 175
B 1176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
€ 1192 193 194 195 196 197 @ 198 1199 200 201 202 203 204 205 206 207
B 208 209 210 @211 212 213 214 215 2160 217 21k 219 220 221 292 0973
1 1224 9225 296 227 228 229 230 .23} 23) 083 934 235 236 237 238 940
B 1240 241 242 243 244 945 D46 | 047 248 249 950 9s] 252 253 954 55
Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary Hexa@epgmal ‘Binary

0 0000 4 0100 8 1000 C 1100

1 0001 5 0101 9 1001 D 1101

2 0010 6 0110 A 1010 E 1110

3 0011 7 0111 B 1011 F 1111

Figure A.2

The relationship between hexa-
decimal and binary.

A1l

Char Bin Hex Char Bin Hex Char Bin Hex Char Bin Hex
NUL 0000000 00 SP 0100000 20 @ 100 0000 40 0 110 0000 60
SOH 0000001 01 0100001 21 A 100 0001 41 a 110 0001 61
STX 0000010 02 0100010 22 B 100 0010 42 b 1100010 62
ETX 0000011 03 # 0100011 23 c 1000011 43 c 1100011 63
EOT 0000100 04 $ 0100100 24 D 1000100 44 d 1100100 64
ENQ 0000101 05 % 0100101 25 E 1000101 45 e 1100101 65
ACK 0000110 06 & 0100110 26 F 1000110 46 £ 1100110 66
BEL 0000111 07 ! 0100111 . 27 G 1000111 47 g 1100111 .67
BS 000 1000 08 010 1000 28 H 100 1000 48 h 110 1000 68
HT 000 1001 09 0101001 - 29 1 100 1001 49 i 110 1001 69
LE 000 1010 OA 010 1010 2A J 100 1010 4A j 110 1010 6A
VT 000 1011 OB 0101011 2B K 100 1011 4B k 110 1011 6B
FF 000 1100 0OC 0101100 2C L 100 1100 4C 1 1101100 6€
CR 000 1101 OD 0101101 ' 2D M 100 1101 4D m 1101101 6D
SO 000 1110 OE ‘ 0101110 * 2B N 100 1110 4E n 110 1110 ' 6F
SI 000 1111 OF / 0101111 ©2F (¢} 10011111 . 4F o 1101111 . 6F
DLE: 0010000 10 0 011 0000 30 P 101 0000 50 P 1110000 70
DC1 . 0010001 .« 11 1 0110001 @ 31 Q 1010001 . 51 q 1110001 .. 71
DC2.. 0010010 . .12 2 011 0010 32 R 101 0010 . 52 r 1110010 . 72
DC3. . 0010011 - 13 3 0110011 33 S 1010011 . 53 s 1110011 . 73
DC4 0010100 14 4 011 0100 34 T 101 0100 54 t 1110100 . 74
NAK 0010101 15 5 011 0101 35 U 1010101 55 u 111 0101 73
SYN ' 0010110 16 6 0110110 36 v 1010110 ° 56 v 1110110 76
EIB 0010111 17 7 011 0111 37 W 1010111 «» 57 w 1110111 - 97
CAN 001 1000 18 8 011 1000 38 X 1011000 58 x 1111000 78
EM 001 1001 19 9 0111001 39 Y 1011001 -« 59 y 111001 - 79
SUB 001 1010 1A : 011 1010 3A Z 101 1010 . 5A z 111 1010 7TA
BESC. ..0011011 1B 7 0111011 3B [1011011 . 5B { 1111011 7B
FS 0011100 . 1C < 011 1100 3C \ 1011100 = 5C | 1111100 . 7C
GS 0011101 . 1D = 0111101 3D 1 101 1101 . 5D } 111 1101 .. 7D
RS 001 1110 1E > 011 1110 3E A 101 1110 5E ~ 1111110 7E
UsS 001 1111 1F ? orLi1il . 3k o 0L 1L & SH DEL - 111111 /F

Abbreviations for Control Characters

Figure A3

NUL null, or all zeros FF forn_l feed CAN cancel _ The American Standard Code for

SOH start of heading CR carriage return EM end of medium Information Interchange (ASCII)

STX start of text SO shift out SUB substitute '

ETX end of text SI shift in ESC escape

EOT end of transmission DLE data link escape FS file separator

ENQ enquiry DC1 device control 1 GS group separator

ACK acknowledge DC2 device control 2 RS record separator

BEL bell DC3 device control 3 US unit separator

BS backspace DC4 device control 4 SP space

HT horizontal tabulation ~ NAK negative acknowledge DEL delete

LF line feed SUN synchronous idle

VT vertical tabulation ETB end of transmission block

Central processing unit (CPU)

Status bits (NZVC) l:l]:l:l

Accumulator (2)

Index register (X)

Base register (B)

Stack pointer (SP)

L]
L[]
L]
Program counter (eC) | | | []
LI
L]
LLL]]

Instruction register (IR) {

Instruction l | | I | | I | l
specifier

specines | LI TTTTTTTTTTTTT]

(a) The two parts of an instruction.

LT
——
L Addressing mode specifier
Register specifier (R)

\—_V_J
Operation code

(b) The instruction specifier part of an instruction.

Appendix Pep/7 Architecture A3

Figure A.4

The central processing unit of the
Pep/7 computer.

Figure A.5

The Pep/7 instruction format.

A4 Appendix Pep/7 Architecture

Register Register B, 5.6
specifier specified (R) The register specified by the register
specifier part of the opcode.
0 Accumulator (&)
1 Index register (X)

Figure A.7
Addr. mode specifier Addr. mode specified —

The addressing mode specified by

00 Immediate (i) the addressing mode specifier part
01 Direct (d) of the opcode.

10 Stack relative (s)

11 Indexed (x)

Figure A.8

The relationship between the
operand and the operand specifier.

® Immediate addressing:

Oprnd = OprndSpec
= Direct addressing:

Oprnd = Mem[OprndSpec]
= Stack-relative addressing:

Oprnd = Mem[SP + OprndSpec]
® Indexed addressing:

Oprnd = Mem[B + X]

Addr. Status

Opcode Mnemonic Meaning modes bits
00000 STOP stop execution U
00001 LOADR R := Oprnd idsx NZ
00010 STORER Oprnd := R dsx
00011 ADDR R := R 4+ Oprnd idsx NzZVC
00100 SUBR R := R - Oprnd idsx NzvC
00101 ANDR R := R AND Oprnd idsx NZ
00110 ORR R := R OR Oprnd idsx NZ
00111 NOTR R := NOT R U Nz
01000 ASLR € := most.significant.bit.; U NZVC
R := arithmetic shift left R
01001 ASRR C := least significant bit; U NZC
Ricadgrithmetic ghift ¥ight R
01010 LDBYTR R := byte Oprnd idsx NZ
01011 STBYTR byte Oprnd ;= R dsx
01100 LOADB B . := Oprnd idsx Nz
01101 ADDSP SP.:= SP 4+ Oprnd i NZvC
01110 BR PC := Oprnd 1o
oplutaial BRLE if NZVC=< then PC := Oprnd ix
10000 BRLT if NZVC = < then PC := Oprnd ix
10001 BREQ if NZVC == then PC := Oprnd 1%
10010 BRNE if NZVC=# then PC := Oprnd 130
10011 BRGE if NZVC€=2 then PC := Oprnd 1%
10100 BRGT if NZVC =~ then PC := Oprnd ix
10101 BRV if V=1 then PC := Optnd 3¢
101310 BRC i@« bhen PC := Oprnd 12
10111 COMPR R - Oprnd idsx NZvC
11000 JSR s sl o ix
Mem[SP] := PC;
PC = Opirnd
11001 RTS PC := Mem[SP] ; U
SP == 8P + 2
11010 RTT return from interrupt U
11011 CHARI byte Oprnd := input dsx
11100 CHARO output := byte Oprnd idsx
131071 DECI Oprnd := input dsx Nzv
11110 DECO output := Oprnd idsx
11111 HEXO output := Oprnd idsx
Figure A.9

The Pep/7 instruction set.

