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Preface

Many vision problems have to deal with different entities (regions, lines, line
junctions, etc.) and their relationships. These entities together with their rela-
tionships may be encoded using graphs or hypergraphs. The structural infor-
mation encoded by graphs allows computer vision algorithms to address both
the features of the different entities and the structural or topological relation-
ships between them. Moreover, turning a computer vision problem into a graph
problem allows one to access the full arsenal of graph algorithms developed in
computer science.

The Technical Committee (TC15, http://www.iapr.org/tcs.html) of the
IAPR (International Association for Pattern Recognition) has been funded in
order to federate and to encourage research work in these fields. Among its ac-
tivities, TC15 encourages the organization of special graph sessions at many
computer vision conferences and organizes the biennial workshop GbR. While
being designed within a specific framework, the graph algorithms developed for
computer vision and pattern recognition tasks often share constraints and goals
with those developed in other research fields such as data mining, robotics and
discrete geometry. The TC15 community is thus not closed in its research fields
but on the contrary is open to interchanges with other groups/communities.
Within this framework, the TC15 community decided to organize the fifth edi-
tion of its workshop jointly with the international conference Discrete Geometry
for Computer Imagery (DGCI) organized by TC18 of the IAPR. Indeed, within
the pattern recognition field, many graph-based algorithms are used to analyze
the structures of the underlying objects. On the other hand, many algorithms
of discrete geometry aim at finding the structures of unstructured sets of pixels
or voxels. From this point of view, both communities aim at studying the struc-
tures of discrete objects. Both conferences were held in Poitiers, during the same
week, with a common session on Wednesday 13th of April.

This volume contains the papers presented at the 5th Workshop on Graph-
Based Representations in Pattern Recognition (GbR) organized by the IAPR
TC15. The workshop was held at the University of Poitiers, France during April
11-13, 2005. The previous workshops in the series were held in Lyon, France
(1997), Haindorf, Austria (1999) [3], Ischia, Italy (2001) [2], and York, UK
(2003) [1].

The papers presented during this workshop, while all based on graphs, cover
a wide range of research fields related to image processing and understanding.
Indeed, one paper presented by Alain Bretto and Luc Gillibert uses graphs for
low image processing such as noise attenuation and edge detection. Then several
papers present several segmentation methods based on graphs together with im-
proved graph data structures to encode fine properties of the partitions. Graphs
or hierarchical graph data structures may thus be used to encode fine proper-
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ties of the image’s content. However, graphs may also be used to encode shape
information. Many papers presented during this workshop encode a shape using
either its skeleton or a set of points characterizing it. Given a graph describing an
object (a shape, an image, a graphic, etc.) the next step consists of determining
a measure of similarity between these graphs in order to derive a similarity mea-
sure between the underlying objects. Several papers devoted to graph matching
attack this difficult problem using either exact or inexact algorithms. Algorithms
based on graph kernels and the heat kernel equations provide alternative and
interesting approaches to graph matching. Graph-matching algorithms may be
pushed one step further by studying not only the matching between two graphs
but also the classification of a set of graphs or the analysis of a sequence of
graphs. Several papers presented during the workshop present novel and inter-
esting ideas on these topics.

The papers presented here have all been reviewed by two reviewers and re-
vised by their authors. The 50 papers submitted to the GbR were written by
authors coming from 20 different countries located on five different continents.
Based on these 50 submitted papers the Program Committee selected 18 of them
as full papers and 17 of them as posters. We would therefore like to thank the
members of the Program Committee and the additional reviewers for their help
in ensuring that the papers were given a thorough and critical evaluation. We
would also like to thank: our sponsors who provided the material and financial
help for the organization of this workshop.

April 2005 Luc Brun
Mario Vento
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Hypergraph-Based Image Representation

Alain Bretto and Luc Gillibert

Université de Caen, GREYC CNRS UMR-6072, Campus II, Bd Marechal Juin BP,
5186, 14032 Caen cedex, France
{alain.bretto, lgillibe}@info.unicaen.fr

Abstract. An appropriate image representation induces some good im-
age treatment algorithms. Hypergraph theory is a theory of finite com-
binatorial sets, modeling a lot of problems of operational research and
combinatorial optimization. Hypergraphs are now used in many domains
such as chemistry, engineering and image processing. We present an
overview of a hypergraph-based picture representation giving much ap-
plication in picture manipulation, analysis and restoration: the Image
Adaptive Neighborhood Hypergraph (IANH). With the IANH it is pos-
sible to build powerful noise detection an elimination algorithm, but also
to make some edges detection or some image segmentation. IANH has
various applications and this paper presents a survey of them.

Keywords: Image Processing, Image Model, Segmentation, Edge De-
tection, Noise Cancellation, Hypergraph, Graph, Neighborhood Hyper-
graph.

1 Introduction

Graphs are very powerful tools for describing many problems and structures in
computer sciences but also in physic and mathematics. But graphs only describe
some binary relations and are not always sufficient for modeling some complex
problems or data. Hypergraph theory, originally developed by C. Berge [8] in
1960, is a generalization of graph theory. The idea consists in considering sets
as generalized edges and then calling a hypergraph the family of these edges.
This concept models more general types of relations than graph theory do. In
the last decades, the theory of hypergraphs has proved to be of a major interest
in applications to real-world problems. These mathematical frameworks can be
used to model networks, data structures, process scheduling, computations, and
a variety of other systems where complex relations between the objects in the
system play a dominant role.

To any digital image, a hypergraph, the Image Adaptive Neighborhood Hy-
pergraph (IANH), can be associated and used for image processing. Many pub-
lications were written about this hypergraph model and many applications were
found [1, 2, 4, 6]. This paper is a survey of different methods about image analysis
and treatment based on this adaptive neighborhood hypergraph model.

L. Brun and M. Vento (Eds.): GbRPR 2005, LNCS 3434, pp. 1-11, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 A. Bretto and L. Gillibert

First, we give basic definitions about hypergraphs and the definition of the
IANH. Then we present an algorithm building the IANH and we study its prop-
erties and its complexity. Finally we illustrate some applications of the IANH
to the image segmentation, the edge detection and the noise cancellation, three
of the most important low level image processings. We give some powerful algo-
rithms always based on the adaptive neighborhood hypergraph associated to an
image. A set of examples is shown to illustrate the effectiveness of the algorithms.

2 Definitions

The general terminology concerning graphs and hypergraphs is similar to [8,7].
All graphs in this paper are, finite, undirected, connected with no isolated vertex
and simple, 7. e. graphs with no loops or multiple edges. We denote a graph
G = (V; E). Given a graph G, we denote by I'(z) the neighborhood of a vertex
z, i. e. the set consisting of all vertices adjacent to z which is defined by I'(z) =
{y e V,{z,y} € E}.

A hypergraph H on a set X is a family (E;);er of non-empty subsets of X
called hyperedges with;

UEi=X, I={12...,n}, neN
i€l

Let us note H = (S;(E;)icr). For z € S, a star of H (with center z) is the
set of hyperedges which contains z, and is called H(z). The degree of z is the
cardinality of the star H(z) denoted by dz = Card(H(z)).

Let H = (S; E = (F;)ic1) be a hypergraph, the dual hypergraph H* is the
hypergraph such that the set of vertices is the set of hyperedges, and the set of hy-
peredges is the set of stars of H. We can represent a hypergraph as in figure 1-(a).

A hyperedge E; is isolated if and only if:

Viel, j+#i,if E;NE; #0then E; C E,

An important structure from a hypergraph is the notion of intersecting family.
A family of hyperedges is an intersecting family if the hyperedges from this family
intersect two by two. We can distinguish two types of intersecting families:

— Intersecting families with an empty intersection.
— Intersecting families with an non empty intersection.

A hypergraph has the HELLY property if each family of hyperedges intersect-
ing two by two (intersecting family) has a non empty intersection (belongs to a
star). As example in figure 1-(a) the hypergraph has the HELLY property. Fig-
ure 1-(b) shows these two types of intersecting hyperedges. To each graph one
can associate a hypergraph. Indeed, let G = (X, E) be a graph, the hypergraph
having the vertices of G as vertices and the neighborhood of these vertices as
hyperedges (including these vertices) is called the neighborhood hypergraph of G
and is denoted by:

Hg = (X, (E: = {z} UT'(z)))
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(b)

Fig. 1. (a) Example of hypergraph, the set of vertices is {z1,x2,...,213} and the set
of hyperedges is {Eh1, Fs, E3, Es}. (b) We have two types of intersecting families the
first is the star the second has an empty intersection

3 Image Adaptive Hypergraph Model

First we recall some definitions about digital images. A distance d’ on X defines
a grid (a graph connected, regular, without both loop and multi-edge). A digital
tmage (on a grid) is a two-dimensional discrete function that has been digitized
both in spatial coordinates and in magnitude feature value. Throughout this
paper a digital image will be represented by the application I : X C Z? — C C
Z™ with n > 1, where C identifies the feature intensity level and X identifies a
set of points called image points. The couple (z, I(z)) is called a pizel. Let d be
a distance on C, we have a neighborhood relation on an image defined by:

Ve € X, I'pp(z) =
{z' € X,2' #z | d(Z(z),Z(z")) < a and d'(z,z") < B} (1)

The neighborhood of z on the grid will be denoted by I's(z). So to each image
we can associate a hypergraph called Image Adaptive Neighborhood Hypergraph
(IANH): Hqp = (X, ({z} U I g(2))zex). The attribute o can be computed
in an adaptive way depending on local properties of the image. If « is constant
the hypergraph is called the Image Neighborhood Hypergraph (INH). Throughout
this paper o will be estimated by the standard deviation of the pixels {z}UI's(x).

Algorithm: Image Adaptive Neighborhood Hypergraph
Construction of the hypergraph Hy g .
Data: Image I of size m; x my, and neighborhood order g
X=0;
For each pixel z of I, do ;
o = the standard deviation of the pixels {z} U I'3(z);
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Top(z) =05
For each pixel y of I's(z), do
if d(I(z),1(y)) < a then
Iop(x) = Tap(z) U{y};
end if
end for
X =X U{z}; Eap(z) = {lap(r) U{z}};
end for
Hop = (X, (Ea,8(T))zex);
End

Data Structures Used: For each z, I', g(z) is a table of booleans, so E, g is
a mg X my table of tables. The set X is a m, x m, table of booleans.

Proposition 1. Given 3, the algorithm converges to a unique solution. Its com-
plexity is in O(n) (n standing for the pizel number of the image). (For the proof
report to [2]).

4 Detection of Impulsive Noise

A common type of corruption that occurs in image data is corruption by an
impulsive noise process. Attenuation of noise and preservation of details are
usually two contradictory aspects of image. Various noise reduction algorithms
make various assumptions, depending on the type of imagery and the goals of
the restoration [9],(10].

In this section, we present a noise cancellation algorithm that exploits a lack
of homogeneity criterion. We consider that the global homogeneity characterizes
regions, local homogeneity characterizes edges, no homogeneity characterizes a
noise. A noise reduction algorithm is based on the following criterion: binary
classification of hyperedge of image (Hp noisy hyperedge and H; no noisy hy-
peredge) and filtering the noisy parts.

Noise Definition - We will call disjoined chain a ordered succession of hyper-
edges disconnected two by two and build on some adjacent pixels. A disjoined
chain is thin if the cardinality of each hyperedge is equal to 1. To model a noise
we propose the following definition:

We say that E, g(z) is a noise hyperedge if it verifies one of the two conditions:

— The cardinality of E, g(z) is equal to 1 and E, g(z) is not contained in
disjoined thin chain having five elements at least.

— E, g(z) is an isolated hyperedge and there exists an element y belonging to
the open neighborhood of E, g(x) on the grid, such that E, g(y) is isolated.
(i.e. Eq p is isolated and it has an isolated hyperedge in its neighborhood on
the grid).

This definition allows a good discrimination between edge pixels and noisy pixels.
The lemma below shows that a noisy hyperedge must be isolated.
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Lemma 1. If the cardinality of a hyperedge is equal to one, then this hyperedge

is isolated. (For the proof report to [6]).
With the noise definition above, a noise detection algorithm is simple. The

IANH is built and all the hyperedges satisfying the conditions of the noise def-
inition are selected. This selection is separated in two step, first the detection
of the isolated hyperedges and then, in the set of the isolated hyperedges, the
detection of the noisy hyperedges.

Algorithm: Noise Detection

Data: Image I of size m; x my, IANH H, g.

Determination of isolated hyperedges of Hy g
For each vertex z of H, g, do ;

By = Uyeg. 5(x) Bus
If E, == E,, (E, is an isolated hyperedge) then
If Cardinality of F. is equal to one then

1S0[z] = E;;
Else
IS[z] = E,;
end if
end if
end for

Detection of noise hyperedges of Hy
For each E, of ISO[], do
For each E, of ISO[], and z # y do
For each E, of ISO[], and z # z and y # z do
If y,z & I'3(z) then
NH[z] = Eg;
end if
end for
end for
end for
For each E, of IS([], do
If there is y € I'°(E;) such as E, g(y) € ISO[|U IS]], then
NHz] = E,;
end if
end for
End

Data Structures Used: The data structures used for the IANH and its hy-
peredges are the same that in the IJANH construction algorithm. The sets 150,
ES and NH are some m, x m,, tables of hyperedges.

The complexity of this algorithm is in O(n®). This algorithm has been tested
on several images in order to show how effective our method is. This method
has a great advantage over the class of linear filters; it preserves the edges, so
the additional complexity provides some additional results. Some experimental
results can be found in [6]. Some visual examples are shown in figure 2.



6 A. Bretto and L. Gillibert

Noise detection

Natural image

Image corrupted

Fig. 2. Example of IANH-based noise detection and cancellation

5 Segmentation

One of the first major step of low level vision is segmentation. Segmentation is the
process which consists in partitioning an image into some non-intersecting regions
such that each region is homogeneous and that the union of two adjacent regions
is never homogeneous. The algorithm below will give us the segmentation of an
image. This algorithm is based on the detection of stars in the hypergraph model.

The algorithm process can be divided into in two main parts. In the first part,
a covering of the image by a minimal set of stars is computed. In the second
part, selected stars are aggregated to obtain the regions. This regions are the
segments of the image.

Natural image Segmentation

Fig. 3. Example of JANH-based image segmentation

Algorithm: Covering and Selection for Segmentation
Data: Image I of size m, x my, IANH H, g.
Choosing a cover of the image by a minimal set of stars.
Chose a minimal cover of the image, £ = {H(z), H(z2),... H(z,)},
such that any pixel of the image belongs to at most one hyperedge
of at least one star of the set E.
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Building aggregate areas.
For each H(z;) in E, do
I(x;) = grey level of the center of the star H(x;);
Agg; = 0 (initialization on a new aggregation area)
For each H(z;) intersecting with the star H(z;), do
If I(z;) in (I(z;) —a, I(z;)+ al, then
Agg; = Agg; U (vertices of H(z;) U H(z;));
end if
end for
end for
Reducing the number of areas.
For each aggregate area Agg;, do
g; = center of gravity of Agg;;
min; = minimum grey level of the centers of the stars of Agg;;
maz; = maximum grey level of the centers of the stars of Agg;;
med; = medium grey level of the centers of the stars of Agg;;
end for
For each aggregate area Agg;, do
For each area Agg; intersecting with Agg;, do
If g; or g; is in Agg; U Agg;,
and min; in [min; — o, min; + o,
and maz; in [maz; — a, maz; + al,
and med; in [med; — «, med; + o], then
Aggregate Agg; and Agg;;
end if
end for
end for
Assigning each star to an aggregation area to obtain a partition.
Chose the area Agg; containing the greatest number of stars
For each star H in Agg;, do
Assign the star H to Agg;;
For each aggregate area Agg; # Agg;, do
Remove H from Agg;;
end for
end for
Repeat chose until all the stars have been assigned.
Assigning the pizels generating edges
For each pixel z in I, do
If z in several stars, then
assign z to the area of the star center whose grey level is the closest
end if
end for

Finally, the pixels lefts are assigned to the area of the neighboring pixel which
has already been assigned, and whose grey level is the closest.



