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Preface

This volume constitutes the refereed proceedings of the Fifth Workshop on Al-
gorithms and Models for the Web-Graph, WAW 2007, held in San Diego in
December 2007. The proceedings consist of 18 revised papers (13 regular pa-
pers and 5 short papers) which were reviewed and selected from a large pool of
submissions. The papers address a wide variety of topics related to the study
of the Web-graph such as random graph models for the Web-graph, PageRank
analysis and computation, decentralized search, local partitioning algorithms,
and traceroute sampling.

The Web-graph has been the focal point of a tremendous amount of research
for more than a decade. The view of the Web as a graph has great practical im-
portance and has also generated much interesting theoretical work. A goal of the
2007 Workshop was to present state-of-the art research on both the applications
and theory of the Web-graph. Our hope is that the papers presented here will
help stimulate new and exciting avenues of research on the Web-graph.

December 2007 Anthony Bonato
Fan Chung Graham
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Bias Reduction in Traceroute Sampling —
Towards a More Accurate Map of the Internet

Abraham D. Flaxman! and Juan Vera?

! Microsoft Research
Redmond, WA
abie@microsoft.com
2 Georgia Institute of Technology
Atlanta, GA
jvera@cc.gatech.edu

Abstract. Traceroute sampling is an important technique in exploring
the internet router graph and the autonomous system graph. Although
it is one of the primary techniques used in calculating statistics about
the internet, it can introduce bias that corrupts these estimates. This
paper reports on a theoretical and experimental investigation of a new
technique to reduce the bias of traceroute sampling when estimating
the degree distribution. We develop a new estimator for the degree of a
node in a traceroute-sampled graph; validate the estimator theoretically
in Erdés-Rényi graphs and, through computer experiments, for a wider
range of graphs; and apply it to produce a new picture of the degree
distribution of the autonomous system graph.

1 Introduction

The internet is quite a mysterious network. It is a huge and complex tangle of
routers, wired together by millions of edges. To understand this router graph is
quite a challenge, one that has driven research for the last decade.

The router graph has a natural clustering into Autonomous Systems (ASes),
which are sets of routers under the same management. Producing an accurate
picture of the AS graph is an important step towards understanding the internet.

There are three techniques for finding large sets of edges in the AS graph: the
WHOIS database, BGP tables, and traceroute sampling. No approach is clearly
superior, and the results of the different approaches are compared in detail in a
recent paper [14].

The present paper focuses on traceroute sampling, an approach applicable
to the router graph as well as the AS graph. Traceroute sampling consists of
recording the paths that packets follow when they are sent from monitor nodes
to target nodes, and merging all of these paths to produce an approximation of
the AS graph.

A seminal analysis using both traceroute sampling and BGP tables concluded
that the AS graph degree distribution follows a power-law (meaning that the
number of ASes of degree k is proportional to k™ for a wide range of k values)

A. Bonato and F.R.K. Chung (Eds.): WAW 2007, LNCS 4863, pp. 1-15, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 A.D. Flaxman and J. Vera

[7]. This caused a shift in simulation methodology for evaluating network al-
gorithms and also contributed to the avalanche of recently developed network
models which produce power-law degree distributions.

However, the true nature of the AS-graph degree distribution was called into
question by computer experiments on synthetic graphs [12,17]. These experi-
ments show that if the sets of monitor and target nodes are too small then
traceroute sampling will produce a power-law degree distribution, even when
the underlying graph has a tightly concentrated degree distribution. Theoretical
follow-up work proved rigorously that in many non-power-law graphs, includ-
ing random regular graphs, an idealized model of traceroute sampling yiclds
power-law degree distributions [4,1].

Subsequent computer experiments have led some to believe that the bias in-
herent to traceroute sampling can be ignored, at least for making a qualita-
tive distinction between scale-free and homogeneous graphs, when using a large
cnough set of monitor nodes [9]. This is also supported by an analysis using the
statistical physics technique of mean field approximation [5].

1.1 Our Contribution

This paper proposes a new way forward in the struggle to characterize the degree
distribution of the AS graph. Our contribution has three parts:

1. We derive a statistical technique for reducing the bias in traceroute sampling;

2. We verify the technique experimentally and theoretically, in the framework
previously studied in [12,4];

3. We use the traceroute bias-reduction technique to generate a more accurate
picture of the AS degree distribution over time, which suggests that aspects
of commercially available technology are reflected in the network topology.

Our approach for reducing the bias in traceroute sampling is based on a technique
from biostatistics, the multiple-recapture census, which has been developed for
estimating the size of an animal population [18] (this technique also has applica-
tions to proofreading [19]). However, we do not have the benefit of independent
random variables which are central to the animal counting and proofreading
statistics, and so we must adapt the technique to apply to random variables
with complicated dependencies.

To provide some evidence that this bias-reduction technique actually reduces
bias, we consider a widely used model of traceroute sampling, which assumes
that data travels from monitor to target along the shortest path in the network.
It is generally believed that the path that data actually takes is not the shortest
path, but that the shortest path is an acceptable approximation of the actual
path (sce [13] for a discussion of this approximation). In this model, it is possible
to check theoretically and experimentally that the bias reduction provides a
better estimate of the degree distribution. We show that the new estimation is
asymptotically unbiased for the Erdés-Rényi random graph G, ;, when np >
log n, and that it gives improved estimates for finite instances from a variety of
different graphs.
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Finally, we use the bias-reduction technique on real data, traceroute samples
from the internet. The new estimate of the AS-graph degree distribution is still
scale-free over two orders of magnitude, with an exponent very similar to the
uncorrected degree distribution (see Figure 1). A by-product of bias reduction
is the removal of all vertices with degree less than 3, and this increases the
average degree. For example, in March 2004 (the month used for comparison in
[14]), the biased estimate of average degree is 6.29, while after bias reduction the
average degree is 12.66 (which is very close to 12.52, the biased average degree
when restricted to vertices of degree at least 3). An interesting feature in the
bias-reduced AS degree distribution (from March 2004) is the lack of nodes with
degree between 65 and 90; at the time, a popular router maker offered a router
which provided up to 64 ports per chassis. In March 2002, before this product
was available, there was no dearth of 65 degree nodes.

< A A X 2004, Biased
* 2004, Bias Reduced

¢ ¢ ¢ ¢ 2002 Bias Reduced

Pr[deg(u) > k]

& 10! 102 103

Fig. 1. Degree sequence ccdf estimates for the AS graph (from CAIDA skitter). Main
panel: March, 2004, with and without bias reduction. Inset: a portion of cedf for March,
2004 and March, 2002, both with bias reduction. The nodes with degree between 65
and 90 in 2002 have disappeared in 2004.

1.2 Related Work

Internet mapping by traceroute sampling was pioneered by Pansiot and Grad
in [15], and the scale-free naturc of the degree distribution was observed by
Faloutsos, Faloutsos, and Faloutsos in [7]. Since 1998, the Cooperative Associa-
tion for Internet Data Analysis (CAIDA) project skitter has archived traceroute
data that is collected daily [10]. The bias introduced by traceroute sampling
was identified in computer experiments by Lakhina, Byers, Crovella, and Xie
in [12] and Petermann and De Los Rios [17], and formally proven to hold in
a model of one-monitor, all-target traceroute sample by Clauset and Moore
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[4] and, in further generality, by Achlioptas, Clauset, Kempe, and Moore [1].
Computer experiments by to Guillaume, Latapy, and Magoni [9] and an anal-
ysis using the mean field approximation of statistical physics due to Dall’Asta,
Alvarez-Hamelin, Barrat, Vazquez, and Vespignani [5] argue that, despite the
bias introduced by traceroute sampling, some sort of scale-free behavior can be
inferred from the union of traceroute-sampled paths.

The present paper provides a new avenue for investigating these controver-
sial questions, by developing a method for correcting the bias introduced by
traceroute sampling. Another recent paper by Viger, Barrat, Dall’Asta, Zhang
and Kolaczyk applied techniques from statistics to reduce the bias of traceroute
sampling [21]. That paper focused on estimating the number of nodes in the
AS graph, and applied techniques from a different problem in biostatistics, es-
timating the number of species in a bioregion. The problem of correcting bias
in sampled networks has a long history in sociology, although the biases in that
domain seem somewhat different; see the surveys by Frank, by Klovdahl, or by
Salganik and Heckathorn for an overview [8,11,20].

In addition to traceroute sampling, maps of the AS graph have been generated
in two different ways, using BGP tables and using the WHOIS database. A recent
paper by Mahadevan, Krioukov, Fomenkov, Dimitropoulos, claffy, and Vahdat
provides a detailed comparison of the graphs that result from each of these
measurement techniques [14].

1.3 Outline of What Follows

The new estimator for the degree of a node in the AS graph is developed from
multiple-recapture population estimation in Section 2. Section 3 argues that
this estimator generates an asymptotically unbiased degree distribution for the
Erdés-Rényi graph G, ;, when p >> log n, which rigorously demonstrates that the
new estimator can reject a null hypothesis. Section 4 presents additional evidence
that the new estimator reduces the bias of traceroute sampling, in the form of
computer experiments on synthetic networks. Section 5 provides a comparison
between the degree sequence predicted by the new estimator and the previous
technique, and details how, after bias reduction, the degree distribution may
reflect cconomic and technological factors present in the system, i.e., there a
significantly larger marginal cost of adding a 65th neighbor than adding a 64th
neighbor when using the Juniper T320 edge router. Section 6 provides a conclu-
sion and focuses on directions of future research to strengthen this approach.

2 Estimation Technique

The classical capture-recapture approach to estimating an animal population
has two phases. First, an experimenter captures animals for a given time period,
marks them (with tags or bands), and releases them, recording the total number
of animals captured. Then, the experimenter captures animals for a second time
period, and records both the number of animals recaptured and the total number
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of animals captured during the second period. If A denotes the number of animals
captured in phase one, B denotes the number captured during phase two, and
C denotes the number captured in phase one and captured again in phase two,
then an estimate of total population size is given by

7 {dcﬁ if C #0;
00, otherwise.

If the true population size is N, and each animal is captured or not cap-
tured during each phase independently, with probability p; during phase one
and probability ps during phase two, then N is the maximum likelihood esti-
mate of N [18]. For more than two phases, the maximum likelihood estimator
does not have a simple closed form, but it can be computed efficiently using the
techniques developed in [18].

When estimating the degree of a particular AS by traceroute sampling, each
edge corresponds to an animal, and each monitor node corresponds to a recapture
phase. Unfortunately, in this setting there is no reason to believe that the events
“monitor ¢ observes edge ;7 are independent. Indeed, when shortest-path routing
is used (as an approximation of BGP routing), these events are highly dependent.
However, it is still possible adapt the capture-recapture estimate to reduce bias
in this case.

Let G be a graph, and let s and ¢ be monitor nodes in G. Let G be the union
of all routes discovered when sending packets from s to every node in the target
set. Define G analogously. Let Ny (u) denote the neighbors of u in G and define
N;(u) analogously.

Using this notation, the modification of the capture-recapture estimate pro-
posed for traceroute sampling is given by

ey (1) = {W—'é)ﬁ' i [Na(u) N Ne(w)] > 2
' 00, otherwise.

When more than 2 monitor nodes are available, pair up the monitors, con-
sider the estimates given by each pair that are not oo, and for the final estima-
tor, use the median of these values. So, if the monitor nodes are paired up as
(s1.t1), (s2,t2)s ..., (Sk, tx) then

(Tég(u) = median ({d/egst(u) & oo}) .

This degree estimator can also provide an estimate of the cdf of the degree
distribution (i.c., the fraction of nodes with degree at most k) according to the
formula

#{u : deg, ,(u) < k}

d<y, = Prldeg(u) < k] = ki ,
#{u deg, ,(u) < o0}

Discussion: It may seem wasteful to consider the median-of-two-monitors es-
timate instead of combining all available monitors in a more holistic manner.
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However, we have conducted computer experiments with maximum likelihood
estimators for multiple-recapture population estimation with more than two
phases, and the adaptations we have considered thus far perform significantly
worse than the median-of-two-monitors approach above. This is probably due to
the complicated dependencies of several overlapping shortest-path trees. How-
ever, the exploration we have conducted to date is not exhaustive, and does not
rule out the possibility that a significantly better estimator exists.

3 Theoretical Analysis

This section and the next intend to provide some assurance that repeated ap-
plication of ac\g(u) is an accurate way to estimate the degree distribution of the
sampled graph. -

This section provides a theoretical analysis of the performance of deg(u) in a
very specific setting: when the underlying graph is the Erdés-Rényi graph G,
with n sufficiently large, np > logn, and every vertex is a target node. For the
purpose of analysis, this section and the next assume that traceroute finds a
shortest path from monitor to target. This is the same setting that is considered
in [4].

Theorem 1. Let G ~ G,, , be a random graph with np = d > logn, and let s, t,
and u be uniformly random vertices of G. Then, for any k, with high probability,

+0(1/d).

(l<‘.:

T #{u: (Te\g(u) < k} _ #{u : deg(u) < k}
= #{u: (/l(-a\g(u) < oo} n

Proof sketch: The analysis two breadth-first-search trees in a random graph is
difficult when the average degree is small. But, for d moderately large, as in this
theorem, the situation is simpler.

It follows from the branching-process approximation of breadth-first search
that with high probability there are (1 + €)d’ vertices at distance exactly i
from s (or t) when i < (logn)/(logd). Thus, almost all vertices are distance
[(logn)/(logd)] apart. For case of analysis, suppose that ¢ = (logn)/(logd) is
an integer.

So. with high probability, if u is at distance ¢ from s or ¢ then it is a leaf node
in G, or G;. In this case, |Ny(u) N Ni(u)| < 1 and therefore (TeE(u) = B

Now, consider the case where vertex u is distance ¢ from s and distance j from
t, where ¢, j < ¢. Let N(u) denote the neighbors of u in G, and then let S be the
set of vertices within distance ¢ of s in G and let T be the set of vertices within
distance j of t in G. Conditioned on S, T and N (u), the set of indicator random
variables

{1[7) € Ny(u)],1[v € Ny(u)]: v € N(u)\ (S UT)}

is independent, and, for v € N(u)\ (SUT), Prlv € Ny(u)] and Prlv € N;(u)]
are functions of S and T', but constants with respect to v, i.e., Prfv € N,| = p,



