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FOREWORD

IT was Not until the twentieth century that the theory of
transcendental numbers was formulated as a theory having its own
special methods and a sufficient supply of solved problems. Isolated
formulations of the problems of this theory existed long ago and the
first of them, as far as we know, is due to Euler. The problem of
approximating algebraic numbers by rational fractions or, more
generally, by algebraic numbers may also be included in the theory
of transcendental numbers, regardless of the fact that the study of
approximations to algebraic numbers by rational fractions was
stimulated by problems in the theory of Diophantine equations.
The object of the present monograph is not only to point out the
content of the modern theory of transcendental numbers and to
discuss the fundamental methods of this theory, but also to give an
idea of the historical course of development of its methods and of
those connections which exist between this theory and other
problems in number theory.

Since the proofs of the fundamental theorems in the theory of
transcendental numbers are rather cumbersome and depend on a
large number of auxiliary propositions, each such proof is prefaced
by a brief discussion of its scheme, which, in our opinion, should
facilitate the understanding of the basic ideas of the corresponding
method.

The author’s articles Approximation of algebraic irrationalities and
their logarithms [11], On the algebraic independence of transcendental
numbers of certain classes [15] are included in this monograph in their
entirety, and use was made of the author’s article The approximation
of algebraic numbers by algebraic numbers and the theory of transcendental
numbers [17].

Siegel’s method is discussed in this monograph in the form given
by Siegel in his book Transcendental Numbers, Princeton, 1949 [5].

Moscow A. O. GELFOND
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CHAPTER 1

The Approximation of Algebraic Irrationalities

§1. Introduction

An algebraic number is a root of an algebraic equation with
rational integral coefficients; in other words, it is any root of an
equation of the form

(l) aoxn+alxn"1+ o o iw +an = O,

where all the numbers ay, a;, . . . , a, are rational integers and ay#0.
A number which is not algebraic is said to be transcendental.

If equation (1) is irreducible, i.e. its left member is not the product
of two polynomials with rational integral coefficients, then its degree
will be the degree of the algebraic number o which satisfies it. A root of
equation (1) in the case ¢y=1 is called an integral algebraic number
or an algebraic integer.

The reader can find the elementary arithmetic properties of
algebraic numbers which are required for understanding the
following material in any book on algebraic numbers, for example
the books Vorlesungen iiber die Theorie der algebraischen Zahlen by Hecke
[1] and The Theory of Algebraic Numbers by Pollard [1]. Here we
shall be occupied only with the problem of the approximation of
algebraic irrationalities and various applications of this theory.

All methods of proof of the transcendence of a number in either
the explicit or implicit form depend on the fact that algebraic
numbers cannot be very well approximated by rational fractions or,
more generally, by algebraic numbers. Therefore, the approxima-
tion of algebraic numbers by algebraic numbers will be considered
in this chapter. This problem, as will be shown, is closely related
io the problem of solving algebraic and transcendental equations in
integers, and to other problems in number theory. Analytic

1



2 TRANSCENDENTAL AND ALGEBRAIC NUMBERS

methods in transcendental number theory may be utilized, in turn,
in integral solutions of equations, and in the sequel certainly in the
solution of problems dealing with the approximation of algebraic
irrationalities.

We note first of all that the existence of transcendental numbers
may also be proved without knowledge of the nature of the approxi-
mation of algebraic numbers by algebraic numbers. In fact, since
the coeflicients of equation (1) can be rational integers only, there
can be only a countable number of equations of type (1) with
prescribed degree n. From this it follows that there exists only a
countable set of algebraic numbers of degree n inasmuch as every
equation of degree n has only n roots. Therefore, the set of all
algebraic numbers is countable. But the set of all complex numbers
(or real numbers) is not countable, from which it follows that the
transcendental numbers form the major part of all complex and
real numbers. Despite this fact, the proof of the transcendence of

any concrete, prescribed numbers, for example 7 or 2V2 is rather
difficult.

The question of the arithmetic nature of an extensive class of
numerical expressions was first formulated by Euler. In his book
Introductio in analysin infinitorum [1], 1748, he makes the assertion that
for rational base a the logarithm of any rational number b which is
not a rational power of a cannot be an irrational number (in
modern terminology, algebraic) and must be counted among the
transcendentals. Besides this assertion, which was proved only
recently, he also formulated other problems dealing directly with
transcendental number theory. Almost a century after Euler,
Liouville [2] was the first, in 1844, to give a necessary condition that
a number be algebraic and, by the same token, a sufficient condition
that the number be transcendental. He showed that if « is a real
root of an irreducible equation of degree v>2, and p, ¢ are any
rational integers, then the inequality

is satisfied, where the constant C does not depend on p and g.
The proof of this inequality is quite straightforward. Suppose « is
a real root of an irreducible equation

S(x) = apx+ -+ +a, =0,
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where all the a; (1 = 0,1,...,7») are rational integers. Then,
using the mean value theorem, we get

0 @ (5-)
- 2 —; &=at1> —«a),
| (2 VOIS :
lol < 1,
from which the Liouville theorem follows directly. This criterion
for the transcendence of a number permitted the first construction

of examples of transcendental numbers. In fact, it follows from the
Liouville transcendence criterion, for example, that the number

o
1
=2
n=1
is transcendental.

Thus, Liouville established that algebraic numbers cannot be
very well approximated by rational fractions. In connection with
this fact, the problem arose of determining a constant ¢ =%3(»)
such that for an arbitrary algebraic number « of degree » the
inequality

o =

2) g

where p, ¢ are integers, will have only a finite number of solutions
when £>0 and an infinite number of solutions when ¢<0. We
remark that the numbers « for which inequality (2) has an infinite
number of solutions for arbitrary ¢ are called Liouville numbers.
Thue [1] was the first, at the beginning of the present century, to be
able to decrease the magnitude of this constant. He showed that
9<v/2+1. To prove this proposition, Thue constructed a poly-
nomial in two variables x and y with rational integral coefficients
having the form

3) S®y) = (y—a)fil® y) + (x—a)fa(x, @),

where f1(x, y) and fy(x, «) are polynomials.

a-—g
q

1

b
+
ghte

P

Assuming that inequality (2) has two solutions p;/q; and pg/qs,
with sufficiently large denominators ¢; and ¢, then setting

Ingy
Tlng,

does not vanish for a suitable choice of f(x,y) when x=p,/¢q; and
Y =ps/qs, he obtained his assertion in a manner analogous to the way

in relation (3) and proving that the left member of (3)
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Liouville’s theorem was proved. This method, which enabled one
to essentially decrease the Liouville constant, is inseparably related
to the assumption that there exist two sufficiently large solutions of
inequality (2). Therefore, this method enables one to establish
only a bound for the number of solutions of inequality (2) and not
for the magnitude of their denominators.

In fact, it follows from Thue’s line of reasoning that if inequality
(2) has a sufficiently large number of solutions for #=»/2+1 and
£>0 with denominators ¢; >¢;'(e, €), then there are no solutions
with denominators ¢,>>¢o'(e, €, ¢,). This at once enables one to
establish, in particular, the finiteness of the number of solutions of
the equation

x
@ f(5) —arrarxr o ram = >3
in integers x and y if the coefficients ¢, ¢q, ¢q, . . . , ¢, are rational
integrals.

In fact, equation (4) implies the relations

) ) -

B = a+1(§—a), o<r<l,

from which, under the condition that the polynomial f(¢) is irredu-
cible in the rational field, it follows immediately that we have a
contradiction with inequality (2) when & + & <n, provided only that
we assume the existence of an infinite number of solutions of equation
(4).

This method was generalized and made precise by Siegel [1] who
showed, using, as did Thue, the existence of two sufficiently large
solutions, that the inequality

p . v —
(6) #< min [m+s] < 2v»
holds. Not only did Siegel make Thue’s method more precise;
he generalized it to the case of the approximation of an algebraic
number « by another algebraic number { of height A and degree n.
The height of an algebraic number { is the maximum of the absolute
values of the coefficients of that equation, irreducible in the rational
field, which is satisfied by { where all the coefficients of this equation
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are integers and their greatest common divisor equals 1. He
showed that the inequality

(7)  le—t| < H-0+9, § = min [L +s], e>0
1<s<o—1 Ls+1

has only a finite number of solutions in algebraic numbers { if « is

an algebraic number of degree ».

Furthermore, he also gave other variants of inequality (7).
Further attempts by Siegel [2] and his students to decrease the
magnitude of the constant ¢ in inequalities (2) and (7), assuming
the existence not only of two, but of an arbitrary number of suffi-
ciently large solutions of inequalities (2) and (7), led Siegel to a
theorem which was sharpened by his student Schneider [1] and
which in the sharpened form reads as follows: If ¢, g9, . - -, Gy - - -
are the denominators of all sequences of solutions of inequality (2)

for #=2 and &> 0, then either lim ln+,,+1= o0 or n<ng. This so-
called Siegel-Schneider theorem, as we see, not only does not
make it possible to establish a bound for the magnitudes of the
denominators of the solutions of inequality (2) for 2<d <d,,

$o= min [

0 1<s<y ) + 1
The last theorem given above generalizes naturally to the case

ofinequality (7). From the first generalization of the Thue theorem,

based on the consideration of two sufficiently large solutions, it

follows, in particular, that the equation

(8) coyt+eynIx+ - - - 4o = Po(x,y), n >3,
for rational integers ¢, ¢1, . .., ¢, and P,(x,y) a polynomial with

rational integral coefficients of degree m, has only a finite number of
solutions in rational integers x and y when

+s] but it also does not even assert their finiteness.

: n
nmmz 1<1;n<1?—1 [5+1+S]
and the left member of the equation is irreducible. From the Siegel-
Schneider theorem it only follows that for n>m+2 the integral
solutions of equation (8) are very rare. We note that the question
whether the number of solutions of equation (8) with n>m+1 is
finite or infinite is answered completely by another means.
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Further generalizations of the Siegel-Schneider theorem and its
applications can be found in the works of Mahler [2-5]. One
ought also to note that some results in the area of approximations of
algebraic irrationalities were obtained by Morduhai-Boltovskoi
[1, 4-6], Kuzmin [2], Gelfond [10, 11], and other authors.

Results, analogous to the Thue-Siegel theorem, dealing with the
problem of the simultaneous approximation of several algebraic
numbers by rational fractions with the same denominators were
obtained by Hasse [1].

The most interesting direct application of theorems of Siegel-
Schneider type in the theory of transcendental numbers is the
following. Suppose p(x) is an integral polynomial which is positive
for x>1. We write down its values for x=1,2,3,...in the
number system with radix ¢. We write the infinite g-nary fraction
as

N=04¢192.--G - -Guy--->

where ¢, ¢5, . . ., ¢,, are the ““digits” in the g-nary expansion of
(1), ¢,,+15 - - - » 4q,, are the “digits” in the g-nary expansion of
£(2), and so on. Then the number % will be transcendental but it
is not a Liouville number. In particular, for p(x) =x and ¢=10,
it will be the transcendental number

n = 0.123456789101112 . . . .

This theorem was proved by Mahler [5] with the aid of the
theorem on the approximation of algebraic irrationalities by rational
fractions, which was a sharpening of Schneider’s theorem for the
case when the numerators and denominators of the approximating
fractions are of a special sort. It also follows from this theorem that
the numbers

In ak+1’

ﬂzzak Aevr > (1 +e) 4+ > 0,
0

ak’

where a>1, ag, ay, ..., A, A9, ... are positive rational integers,
are transcendental. In particular, this assertion holds for the

number
a
1
'I] = zm) o > 0.
0
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In connection with the status of the problem of the approximation
of algebraic irrationalities which was briefly discussed above, the
first question that naturally arises is whether it is possible to decrease
the magnitude of the constant ¢ in comparison with the quantity
obtained by Siegel using only two solutions of inequality (2).
Further, taking into consideration the noneffectiveness of the results,
obtained by Thue’s method, noneffectiveness in the sense that it is
impossible to establish by this method the bounds of the magni-
tudes of the denominators of the solutions of inequality (2) for
¥ <w», the problem how the theorem on the approximation of
algebraic numbers which would be a limiting case in the sense of
effectiveness, using two solutions of inequality (2), should be worded,
also arises naturally. In this formulation of the problem, one must
speak of only two solutions inasmuch as by using a larger number of
solutions one encounters difficulties which have not been eliminated
up to the present time and which are related to the general theory of
elimination.

We shall now formulate the theorem, which will give the answer
to the above question, by introducing, in anticipation, the concept
of measure of an algebraic number. Suppose { is a number in an
algebraic field K of degree o, and let the numbers w,, ws, . . ., @,
be a basis for the ring of integers in this field. The number { we
have taken can be represented in an infinite number of ways in the
form

w1+ - Fpw,

(9) C — pl 1 paa) "
Q101+ - G0,

where py, po, .. ., Py 415 - - - » 4, are rational integers with greatest

common divisor 1. We shall call the number ¢ the measure of the
number ¢ if it is defined by the relation

q[pla LB :qa] = max [Iplla RO 3|qu|]:

(10) q = min q[ﬁl: ceos B G- :qa]

where the minimum in the right member is taken over all possible
representations of the number {. It is not difficult to note that
when (=p/q is a rational number then its measure equals
max [|p|, |¢|], i.e. to within a nonessential constant factor, it
coincides with its denominator ¢ if { is an element of the sequence
of fractions which converges to the number «#0, 1 as ¢ increases.
We can now formulate our general theorem, which we shall call
Theorem I in the sequel. Suppose « and f are two arbitrary
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numbers in the algebraic field K, of degree » (where the case
a=f1is not excluded). Suppose, further, that { and {; are numbers
in an algebraic field K, whose measures with respect to a fixed
integral basis w;, ws, . . . , @, of this field are ¢ and ¢;, respectively,
and that ¢ and ¢, are two real numbers subjected to the conditions
d<Y; <y, 39, =2»(1 +¢), where £¢>0 is an arbitrarily small, fixed
number. Then, if the inequality

(11) le—| < g7
has the solution { with measure ¢ > ¢'[ Ky, K, o, f3, €, 8], the inequality
(12) |B=C1] < g7

cannot have solutions with measure ¢; under the condition that
-1
13 In > [—__——-*-6] In s
(13) "2 vite) 7

where 0 is any arbitrarily small positive constant. [The special
case of this theorem, when a=p, { a rational fraction, ¢ =%, and
without inequality (13), was proved independently by Dyson.]

The gp-adic analogue of the above theorem is formulated in a
similar manner. It also follows from the above theorem,
setting =+, in it, that inequality (2) has only a finite number of
solutions for & >0, when # =1/2y. That our general theorem is the
best possible from the point of view of effectiveness can be directly
established in the case when { and {; are rational fractions and
a=f. In fact, if one could replace ¢ >0 by —¢& <0 in the condition
39, =2v(1 +¢&) of the theorem, then it would have the form
#9,=2v(1—¢) and we could have set 9#=2V1—eg<2 and
9,=»V1—e<». Butinequality (11) would indeed have an infinite
number of solutions for { rational, 0 =1 and ¥ < 2, which means that
for solutions of inequality (12) with rational denominators, we
should find an effective bound in the form of a function of K, «, &.
It would already follow directly from this that there exists an effective
bound for the magnitudes of the solutions of equation (4). Finally,
one can say that our general theorem retains its validity if the
measures of the numbers { are replaced by the heights of the
numbers £.

The proof of this theorem is based on a somewhat stronger form
of Thue’s theorem. Using our general Theorem I, with the aid
of some additional considerations, one can prove Theorem II:
Suppose «, {y, Co, ..., (, are algebraic numbers in the field K.
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Suppose also that the product of any integral powers of the numbers
€15 8oy - - -, {, cannot be equal to 1. Then the inequality
(14’) |a—Cl*;¢'2*z “e CJ“SI < e, x = lrilai( Ixi|

and the congruence
(15) o« =l ... Lpsmod pm, m = [dy],y = max |y;|

1<i<s
can have only a finite number of solutions in rational integers
X1; X9, . .., %, and yy, Yo, . . . ,y, provided the numbers ¢>0 and
0>0 are small; p is a prime ideal in the field K. We now state two
corollaries to Theorems I and II. We first of all introduce an
application of Theorem I to the theory of algebraic equations.
Suppose the system of homogeneous forms P,(x,y), Po(x,y), - - -,
P,(x,y) possess the following properties: their degrees are greater
than one, all the coefficients of the polynomials Py(x,y),...,
P,(x,y) are rational integers, these polynomials do not have linear
divisors in the rational field, every real zero of the polynomial
t-mP (2, tx) = Ry (x) belongs to the algebraic field K of degree not
greater than » and all such zeros are distinct. We shall also say
that the degree of the polynomial P(xy, yy, . . . , x,, ¥,) in 2n variables,
having rational integral coefficients, is the set of numbers
($1 S5 - + 5 5,), where s; is the degree of the polynomial P in the
variables x;,y;. Then the following theorem holds: The equation

(16) Pl(xl)yl) ol o Pn(xmyn> = P(xhyb X2y Y25« + o xmyn)

has only a finite number of solutions in rational integers xy, ¥, o,
Y25 « + « » Xy, Yy, provided the inequalitiesm, —s, > V20, k=1,2,. .., n;
v> 3, are satisfied simultaneously.

One may also obtain a number of corollaries to Theorem 11, but
these are already for exponential functions. Suppose, for example,
that the numbers {y, ..., {m vy, .o ¥ M1, - - -, 7, are integers
in the field K; none is an algebraic unit; 4, B, C, ABC#0, are
numbers in the same field K; and the numbers

=0l YEYPLo Yy N =N,
are relatively prime. Then the equation

(17) AC]*: .o Cnxn-i-B’l/)l-’l oo Ipmym-!-C?hZ. . » . 'ﬂpzl' = O
can have only a finite number of nonnegative solutions in rational
INtEZErS X1y -« vy Xpy Vis« - +s Yns Z1s - « - 5 Zo» Further, almost

directly from Theorem II, one can obtain a theorem on the



