


TATA INSTITUTE OF FUNDAMENTAL RESEARCH

REGGE POLES
AND
S-MATRIX THEORY

SSEVEN:L:AFRAUASCHI
California Ti3titiite of Technology

W. A. BENJAMIN, INC. 1963
N ew Yor]t Amstertlam



REGGE POLES AND S-MATRIX THEORY

Copyright © 1963 by Tata Institute of Fundamental Research
All rights reserved

Library of Congress Catalog Card Number 63-22796
Manufactured in the United States of America

Final camera copy for this volume was prepared under
the direction of Dr. Frautschi and was received
on October 5, 1963; the volume was published
on December 16, 1963.

The publisher is pleased to acknowledge the
assistance of William Prokos, who
designed the cover.

W. A. BENJAMIN, INC.
New York City, New York



REGGE POLES
AND
S-MATRIX THEORY



Frontiers in Physics

A Lecture Note and Reprint Series

DAVID PINES, Editor

P. W. Anderson
N. Bloembergen

Geoffrey F. Chew
R. P. Feynman

R. P. Feynman
Hans Frauenfelder

Robert Hofstadter

CONCEPTS IN SOLIDS: Lectures on the Theory of Solids
NUCLEAR MAGNETIC RELAXATION: A Reprint
Volume

S-MATRIX THEORY OF STRONG INTERACTIONS:

A Lecture Note and Reprint Volume

QUANTUM ELECTRODYNAMICS: A Lecture Note
and Reprint Volume

THE THEORY OF FUNDAMENTAL PROCESSES:
A Lecture Note Volume

THE MOSSBAUER EFFECT: A Collection of Reprints
with an Introduction

NUCLEAR AND NUCLEON STRUCTURE: A Reprint
Volume

Leo P. Kadanoff and Gordon Baymi

A. M. Lane

QUANTUM STATISTICAL MECHANICS: A Lecture
Note Volume

RECENT DEVELOPMENTS IN NUCLEAR THEORY:
A Lecture Note and Reprint Volume

R. Omnés and M. Froissart

George E. Pake
David Pines

E. ]. Squires

MANDELSTAM THEORY AND REGGE POLES:
An Introduction for Experimentalists

PARAMAGNETIC RESONANCE: An Introductory
Monograph

THE MANY-BODY PROBLEM: A Lecture Note and
Reprint Volume

COMPLEX ANGULAR MOMENTA AND PARTICLE
PHYSICS: A Lecture Note and Reprint Volume

L. Van Hove, N. M. Hugenholtz, and L. P. Howland

P. Noziéres

S. C. Frautschi

PROBLEMS IN THE QUANTUM THEORY OF MANY-
PARTICLE SYSTEMS: A Reprint Volume

THEORY OF INTERACTING FERMI SYSTEMS:
An Introductory Monograph

REGGE POLES & S-MATRIX THEORY: A Lecture
Note Volume



Preface

Most of the lectures in this book were first given as theoretical seminars
at Cornell University during 1961-1962, and were then augmented and brought
into final form for the Summer School in Theoretical Physics held at Bangalore
in June 1962. Some more recent developments are discussed in two Addenda.

Regge poles enter in the latter half of the lectures after the analogies and
conceptual difficulties that led to their introduction into relativistic physics have
been explained. It is anticipated that some readers will be interested exclusively
in the simpler aspects of Regge poles, however. Readers in this category are
advised to concentrate upon the following sections of the book: the treatment
of ordinary quantum mechanics in Chapters X and XI [through Equation (11-
11) ], and the connection of Regge poles with relativistic scattering in Chapters
XIII (first two paragraphs), XIV, XV, and XVI.

The material in Chapter II is on a similar level and is intended to give
some physical feeling for S-matrix theory in its simpler manifestations. The
chapters on the Mandelstam representation are more weighty and will be of
interest primarily to the theoretical student who wishes to work in this field.

STEVEN C. FRAUTSCHI

Pasadena, California
September 1963
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l.  INTRODUCTION

A considerable ndhhq;~dffstrougly 1ﬁt¢f&cting particles is now
known. For experimental reasons, the particles stable under strong inter-
actions tended to be discovered first, and were followed by the pion-nucleon
resonances and, recently, a large number of other resonances. The situation
now bears some resemblance to nuclear physics: for each set of quantum
numbers there appears to be a "ground level" and various unstable states
with higher mass.

Early attempts to cope with these particles theoretically often
followed the line of attack that had proved so successful in quantum
electrodynamics. A simple Lagrangian was chosen, with renormalized
couplings and masses given, and the other physical observables were
calculated by a perturbation expansion. But this approach failed to give
good predictions because the coupling was strong and the perturbation
expansion converged slowly. In fact, when some of the particles are
resonances or bound states as suggested by analogy with nuclear physics,
the perturbation expansion will not converge at all. Therefore, a
modified approach is needed. The S-matrix methods described in these
lectures represent a modified approach which works even where perturbation
expansions fail,

Since the S-matrix represents a meeting ground between theory and
experiment, most of the S-matrix techniques we shall describe can be used
whether or not one believes in some particular underlying structure, such

as Lagrangian field theory. But, in addition to its use as a tool in

1



2 REGGE POLES; S-MATRIX THEORY

evaluating the comsequences of various theories, the S-matrix appears to
provide hints on scme fundamental questions:

i) 1Is there any essential difference between stable and unstable particles,
other than the presence of states to decay into? In nuclear physics, the
answer is no, whereas in some early treatments of Lagrangian field theory,
a distinction appeared to arise because one did not know how to introduce
unstable particles into the Lagrangian. In S-matrix theory, the distinc-
tion does not appear. (This is also true in recent treatments of field
theory.)

ii) Can masses and coupling constants be calculated? If a particle appears
only when the forces become strongly attractive, then its mass and couplings
are calculable, We call such a particle a bound state if it 1s stable,

a resonance if it is unstable, and composite in either case. It is also
possible to introduce particles into the S-matrix, which are present
independently of the strength or sign of the forces. The masses and
couplings of these particles cannot be calculated -- just as masses and
couplings inserted into a Lagrangian are arbitrary -- and we choose to call
such particles elementary since we cannot explain them. Both composite

and elementary particles may be either stable or unstable. The possibility
of finding experimental distinctions between them is of great interest and
may be provided by Regge poles as we shall see,

iii) How many arbitrary masses and coupling constants are present in
strong interactions? There is no way to deduce this at present. But a

study of the S-matrix as a function of energy, momentum transfer, angular
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momentum, etc., produces a suggestive fact -- the analytic structure of
the S-matrix as a function of these variables becomes simpler as the
number of independent parameters is reduced. This observation has led to

the hypothesis of maximal analyticity -- the analytic structure of the

S-matrix is as simple as possible.l) If this hypothesis is correct, there
are no arbitrary constants in strong interaction physics except for c, ﬁ,
and one mass, and all strongly interacting particles are composite.

The hypothesis of maximal analyticity raises many questions. It has
no evident connection to previous starting points such as Lagrangian theory;
it seems to call for a new axiomatic framework expressed directly in terms
of the S-matrix. Stappa) has proposed such a framework, and the reader is
referred to his lecturesg) for a detailed account. Then there is the
practical question of how to make calculations when nothing is "given".

For this purpose, "bootstrap calculations" based on self-consistency
requirements have been devised.s) Another question concerns the uniqueness

of the solution. The actual strong interactions possess the property of

maximal streggth,h’s) in the sense that high-energy total cross sections

approach a constant geometrical limit. We shall take this property from
experiment; it is not known whether it follows uniquely from maximal
analyticity. Likewise, we shall take the usual conservation laws of
isotopic spin, strangeness, electric charge, and so forth, from experi-

ment, without knowing whether some of them can ultimately be derived.
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Before plunging into details of analytic structure, let us devote
a few words to the meaning of singularities. Why must there be poles and
cuts in the S-matrix even when "maximal analyticity" is assumed? Above
threshold at kinetic energies Re q2/2n + ie, an outgoing solution of the
Schrodinger partial-wave equation acquires a phase 251 at large distances.
The S-matrix in this case is defined as

218 ,(q)
S(q,2) = . (1-1)

The time-reversed solution at Re q2/2m - 1ie has a reversed phase factor
exp (-216‘), resulting in a discontinuity of S. Physically, the discon-
tinuity arises because we are comparing two solutions related by a
discontinuous transformation (time reversal).

Below threshold, q2 becomes negative and q becomes purely imaginary.

The asymptotic wave function, which had the form

-igr _ e-int +iqr

u(q) ~ e 5(q,t) e (1-2)
above threshold, becomes
q . -q
u(1q;) ~ e T -ixt S(1a, £) e T (1-3)

Usually, the wave function cannot be normalized. But at a bound state,
only the converging exponential is present, and this requires S = oo
(normally provided by a pole) at ay > O eand S =0 at ar <0, Fora
given bound state, both the pole and the zero occur since the Schradinger

equation is invariant under q - -q.



Il. EFFECTIVE RANGE THEORY OF S-WAVE SCATTERING,
AND THE N/D METHOD

The effective range formula for S-wave scattering contains a good
deal of low-energy physics. At the same time it is very simple, and its
properties in the complex energy plane can be followed explicitly.G) To
get a physical feeling for the complex energy plane we shall consider the
effective range formula in detail, relating the analyticity properties to
physical properties at each step.

The S-wave elastic scattering amplitude

150
e sin Bo
fo = —————a-———— (2-1)
can be rewritten:
sin 3
o 1
f = i = . (2-2)
o (cos 50 i sin So)q q cot 50 -1q
The effective range approximation is given by
1 R 2
qeot 8 = -7 + 3 g , (2-3)

where A is called the scattering length and R the effective range. So we

have

. : (2-4)

This approximation is valid near threshold for short-range potentials.
Since the denominator of (2-4) is quadratic in q, fo evidently has
two poles in q. As a function of q2, it also has a cut which can be taken

along the real axis from q2 =0 to q2 = 4+00. The reason for this cut
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at positive q? was already touched upon in Chapter I. Under some circum-
stances, one of the poles represents a bound state, a possibility that was
also mentioned in Chapter I. The other pole, however, has to do with the
potential, and in order to see how this comes about we must mention
briefly analyticity properties one finds in a more complete treatment of
fo. We shall show that (2-4) represents a simple approximation to these
analyticity properties. After studying the simple approximation in detail
we shall return, at the end of this chapter and in later chapters, to a
more careful consideration of the full analyticity properties of fo'

The analyticity properties we are interested in have to do with a

particle of mass M, scattering from the Yukawa potential:

e

v(r) = - ; e . (2-5)

This potential has a reasonable behavior at large distances and will
generallze easily to relativistic scattering later on. The Yukawa poten-
tial can be Fourier-transformed to momentum space, where it gives the Born

approximation fB to the scattering amplitude:

1
fB =

" [m2 + 2q2 - 2q? cos 9]

. (2-6)

The S-wave in Born approximation, foB’ can be obtained from (2-6) by the

partial-wave projection

1 2
1
fn= 5 [acosef P (cos6) - —Bs fm(142L) | (2-7)
-1 bxgq' m
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Thus the Yukawa potential gives a cut in the kinetic energy variable
q2/2M, starting at q? = -mz/h. The magnitude of the discontinuity
increases with the strength of the potential, and the discontinuity comes
closer to the physical threshold q? = 0 as the range of the potential
(1/m) is increased. This discontinuity together with corrections, to be
discussed later, from iterations of the potential, is called the "left cut”
(Fig. 2-1). In Born approximation, the left cut is the only discontinuity
but in higher orders a "right cut" at the physical kimetic energies
q2/2M = 0 to oo also appears due to the opposite phases at q? + ie and
q2 - ie, as explained in the Introduction.

Now the simplest approximation to the left cut is to replace it by
a single pole A/(q2 + a2) where, crudely speaking, A represents the
strength of the potential and l/a the range of the potential. There
remains the problem of finding the right cut by iteration of the potential.

For this purpose, it is convenient to write the amplitude as a quotient7)

N
£, =5 , (2-9)
where
A
N- 5t (2-10)
q +a

contains the approximate left cut and D contains all of the right cut with
no other singularities. D can therefore be represented by a Cauchy inte-

gral

o
[}
Y™

B gq1° 2
/] —5*—% mDd(g°) , (2-11)
o q'" -gq
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where we have used the fact that the discontinuity is purely imaginary,
and have assumed that the integral converges. An advantage of writing

the amplitude as a quotient in this way can be seen by combining
ImD =N Im 1/f° (q2 > 0) (2-12)

with the "unitarity condition" that tells us the phase 8 is real for elastic

scattering:
I 1t =Tn[acot®-1q|=-a (320 (2-13)

to give

ImD=-qN (€30 . (2-14)

We now use (2-14) in the Cauchy integral (2-11) and make the normalization

D( q2 = - 32) =1 by a subtraction:
2
D - l = (12 + a2) = dq' F(Q'e) q' (2_15)
2 2 2 2 ‘
* o (a'°+a%)(q'° - q9)

Explicit integration using the one-pole approximation to N (2-10) does

converge and yields

A A
D=l+2_8.- a-1gq » (2-16)
N 1
P o = = . (2-17)
Il - s S S-S W §
CR@ e Rz -1a

The relation of the effective range approximation (2-%) to the full
analytic structure of fo is now clear. It has the same structure as the

one-pole approximation to the left cut (2-17):
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i) Both have two poles in q, as well as & cut in qa. One of the poles

has now been identified with the potential term.

ii) Both contain two parameters.

iii) Both satisfy unitarity.

iv) Both are valid near threshold for a short-range potential. The
reason the one-pole approximation is valid over only a limited
energy range is that the left cut can look similar to a pole only
over a limited region. If the force became longer range, the pole
would have to come closer to threshold and the approximation would

retain its validity in a more and more limited region.

For a given range of forces, one of the two poles in q is fixed at
q = 1 a. It turns out that the other pole moves as the strength of the
potential varies for a given range 1/a. The positioning of poles in the
q plane is illustrated in Fig. 2-2. Meanwhile, the q2 plane exhibits a
slightly more complicated, two-sheeted structure. A value of q,
ie

qa=|q| e ; (2-18)
corresponds to

2 2 216

qQ = IQI e ) (2'19)

so a rotation through © = 2x 1in q corresponds to a rotation through 4x
in q2. The region 0 <@ < x (Im q > 0) transforms to the q2 sheet

pictured in Fig. 2-2, while Im q < O goes onto & second sheet.
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The first sheet is called the physical sheet because:
1) physical q = |q| + i€ 1is on it at (D).
i1) when the pole that moves as the potential strength varies appears on
the first sheet, it has the significance of a physical bound state as
described in the Introduction. Evidently, this 1is the sheet we were

working on when we used the N/D method.

Now let us study the moving pole. The fixed pole was a pole of N
(2-10); the moving pole is a zero of D (2-16). It is located at

A A
D=1+ 2a'a-1q=° 5 (2-20)

which has the solution

. (2-21)

q=1a A - EaJ

A+ 2a

So, as we vary the strength of interaction at fixed a, the pole moves as
indicated in Fig. 2-2.
Consider the case |x| < 2a, Here the pole lies on the second q?
sheet. The amplitude can be rewritten
2,1 1 2,1 1
& (R-3)+q (R+3)+1a

£ = A 2a

2
2,1 1 2 ,1 1 2
[* G -2+ £ Geap] +4d

2
os & [}
_ ¢ sin 5 + 1 sin® . (2-22)




