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Preface

The electronic Schrodinger equation describes the motion of N electrons under
Coulomb interaction forces in a field of clamped nuclei. Solutions of this equation
depend on 3N variables, three spatial dimensions for each electron. Approximat-
ing the solutions is thus inordinately challenging, and it is conventionally believed
that a reduction to simplified models, such as those of the Hartree-Fock method
or density functional theory, is the only tenable approach. This book seeks to con-
vince the reader that this conventional wisdom need not be ironclad: the regularity
of the solutions, which increases with the number of electrons, the decay behavior
of their mixed derivatives, and the antisymmetry enforced by the Pauli principle
contribute properties that allow these functions to be approximated with an order
of complexity which comes arbitrarily close to that for a system of one or two
electrons. The present notes arose from lectures that I gave in Berlin during the
academic year 2008/09 to introduce beginning graduate students of mathematics
into this subject. They are kept on an intermediate level that should be accessible to
an audience of this kind as well as to physicists and theoretical chemists with a cor-
responding mathematical training. The text requires a good knowledge of analysis
to the extent taught at German universities in the first two years of study, including
Lebesgue integration and some basic facts on Banach and Hilbert spaces (comple-
tion, orthogonality, projection theorem, Lax-Milgram theorem, weak convergence),
but no deeper knowledge of the theory of partial differential equations, of functional
analysis, or quantum theory. I thank everybody with whom I had the opportunity
to discuss the topic during the past years, my coworkers both from Tiibingen and
Berlin, above all Jerry Gagelman, who read this text very carefully, found many
inconsistencies, and to whom I owe many hints to improve my English, and par-
ticularly my colleagues Hanns Ruder, who raised my awareness of the physical
background, and Reinhold Schneider, who generously shared all his knowledge and
insight into quantum-chemical approximation methods. The Deutsche Forschungs-
gemeinschaft supported my work through several projects, inside and outside the
DFG-Research Center MATHEON. I dedicate this book to my sons Klaus and Max.

Berlin, September 2009 Harry Yserentant
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Chapter 1
Introduction and Outline

The approximation of high-dimensional functions, whether they be given explicitly
or implicitly as solutions of differential equations, represents one of the grand chal-
lenges of applied mathematics. High-dimensional problems arise in many fields of
application such as data analysis and statistics, but first of all in the sciences. One
of the most notorious and complicated problems of this type is the Schrodinger
equation. The Schrodinger equation forms the basis of quantum mechanics and is
of fundamental importance for our understanding of atoms and molecules. It links
chemistry to physics and describes a system of electrons and nuclei that interact by
Coulomb attraction and repulsion forces. As proposed by Born and Oppenheimer in
the nascency of quantum mechanics, the slower motion of the nuclei is mostly sepa-
rated from that of the electrons. This results in the electronic Schrodinger equation,
the problem to find the eigenvalues and eigenfunctions of the Hamilton operator

(L |

lN N K ZV
H:—EZAi—ZZ———+—2— (1.1)

|xi —ay| 2 ij=1 |xi — X.il
i#]

written down here in dimensionless form or atomic units. It acts on functions with
arguments xy,...,xy € R3, which are associated with the positions of the considered
electrons. The ay are the fixed positions of the nuclei and the positive values Z, the
charges of the nuclei in multiples of the absolute electron charge.

The mathematical theory of the Schrodinger equation for a system of charged
particles is today a central, highly developed part of mathematical physics. Start-
ing point was Kato’s work [48] in which he showed that Hamilton operators of the
given form fit into the abstract framework that was laid by von Neumann [64] a
short time after Schrodinger [73] set up his equation and Born and Oppenheimer
[11] simplified it. An important breakthrough was the Hunziker-van Winter-Zhislin
theorem [46, 90, 98], which states that the spectrum of an atom or molecule con-
sists of isolated eigenvalues Ay < A < X of finite multiplicity between a minimum
eigenvalue A and a ionization bound X and an essential spectrum A > X. The math-
ematical theory of the Schrodinger equation traditionally centers on spectral theory.
Of at least equal importance in the given context are the regularity properties of
the eigenfunctions, whose study began with [49]. For newer developments in this
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2 | Introduction and Outline

direction, see [32] and [45]. Surveys on the mathematical theory of Schrodinger
operators and the quantum N-body problem in particular are given in the articles
[47,75] and in the monograph [38].

Because of its high-dimensionality, it seems to be completely hopeless to attack
the electronic Schrodinger equation directly. Dirac, one of the fathers of quantum
theory, commented on this in [25] with the often quoted words, “the underlying
physical laws necessary for the mathematical theory of a large part of physics
and the whole of chemistry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations much too complicated
to be soluble.” This situation has not changed much during the last eighty years,
and depending on what one understands by soluble, it will never change. Dirac
continued, “it therefore becomes desirable that approximate practical methods of ap-
plying quantum mechanics should be developed, which can lead to an explanation
of the main features of complex atomic systems without too much computation.”
Physicists and chemists followed Dirac’s advice and invented, during the previous
decades, a whole raft of such methods of steadily increasing sophistication. The
most prominent are the Hartree-Fock method that arose a short time after the ad-
vent of quantum mechanics, and its many variants, extensions, and successors, and
the density functional based methods, that have been introduced in the sixties of
the last century and are based on the observation that the ground state energy is
completely determined by the electron density. These methods present themselves a
challenge for mathematics. Lieb and Simon [60] proved the existence of a Hartree-
Fock ground state and Lions [62] the existence of infinitely many solutions of the
Hartree-Fock equations. The existence of solutions of the more general multiconfig-
uration Hartree-Fock equations was proven by Friesecke [33] and Lewin [59]. The
singularities of the solutions of the Hartree-Fock equations at the positions of the nu-
clei have recently been studied by Flad, Schneider, and Schulze [31]. Schneider [72]
gave an insightful interpretation and analysis of one of the most accurate methods
of this type, the coupled cluster method. See [42] and the Nobel lectures of Kohn
[51] and of Pople [66] for an overview on the present state of the art in quantum
chemistry, and [16,56-58] for more mathematically oriented expositions.

The current methods are highly successful and are routinely applied in practice,
so that the goals Dirac formulated eighty years ago are today widely reached. Never-
theless the situation is not very satisfying from the point of view of a mathematician.
This is because the success of many of these methods can only be explained by
clever intuition. In the end, most of these methods resemble more simplified mod-
els than true, unbiased discretizations and, at least from the practical point of
view, do not allow for a systematic improvement of the approximations. That is
why mathematicians, encouraged by the progress in the approximation of high-
dimensional functions, have recently tried to find points of attack to treat the elec-
tronic Schroédinger equation directly. Promising tools are tensor product techniques
as they are developed on a broad basis in Wolfgang Hackbusch’s group at the Max
Planck Institute in Leipzig. Beylkin and Mohlenkamp [10] apply such techniques to
a reformulation of the electronic Schrodinger equation as an integral equation.

The present text intends to contribute to these developments. Aim is to identify
structural properties of the electronic wave functions, the solutions of the electronic
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Schrodinger equation, that will ideally enable breaking the curse of dimensional-
ity. We start from ideas to the approximation of high-dimensional functions that
emerged from the Russian school of numerical analysis and approximation theory
[7,53,54,76] and have since then been reinvented several times [23, 24, 97]. They
are known under the name hyperbolic-cross or sparse-grid approximation. Since
the work of Zenger [97], approaches of this kind have become increasingly popu-
lar in the numerical solution of partial differential equations. For a comprehensive
survey of such techniques, see [15] and, as it regards their application to truly high-
dimensional problems, [35]. Among the first papers in which direct application of
such ideas has been tried for the Schrodinger equation are [34,39,43]. More recent
attempts are [27,28,36,37], and very recently the doctoral theses [40,96]. The order
of convergence that such methods can reach is limited since the involved basis func-
tions do not align with the singularities caused by the electron-electron interaction
[29,30]. Nevertheless such methods have a high potential as our considerations will
show, and be it only for the study of the complexity of electronic wave functions.
The principle behind these constructions can best be understood by means of a
model problem, the L,-approximation of functions u : RY — R that are odd and 27-

periodic in every coordinate direction on the cube Q = [—, 7] by tensor products
d

o(k,x) = [T (x) (1.2)
i=1

of the one-dimensional trigonometric polynomials ¢, ¢2,3,... given by

() = —= sink). (1.3)

Functions with the given properties that are square integrable over Q can be ex-
panded into a multivariate Fourier series and possess therefore the representation

u(x) = Y ak)p(k.x), (k) = / u(x)é (k,x) dx, (1.4)
k Qo

where the sum extends over the multi-indices k = (k;,...,k;) € N and its con-
vergence has to be understood in the Lp-sense. The speed of convergence of this
series depends on that with which the expansion coefficients #(k) decay. Assume,
for example, that u is continuously differentiable, which implies that

du

i d 2 d 5N 5
i = ¥ [ [5e] ar = B (34 )acw 1.9

remains bounded. Consider now the finite part u, of the series (1.4) that extends over
the multi-indices & inside the ball of radius 1/€ around the origin, that is, for which

ki< . (1.6)
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Due to the orthonormality of the functions (1.2), ug is the best approximation of u by
a linear combination of the selected basis functions and satisfies the error estimate

d
nwwmésﬁz(zﬁyﬂmzzﬁwﬁ (1.7)
k i=1

in the Lp-norm. Unfortunately, the number of these basis functions grows like

for € tending to zero, which is out of every reach for higher space dimensions d. The
situation changes if one does not fix the smoothness of the functions to be approxi-
mated, but let it increase with the dimension. Assume, to avoid technicalities, that u
possesses corresponding partial derivatives and that these are continuous and set

" = 2(1‘[k) (k) (1.9)

Iullmlx / |axl axd -
Let u; be the function represented by the finite part of the series (1.4) that extends
over the multi-indices k now not inside a ball but inside the hyperboloid given by

[Tt < 1 (1.10)
£

The Lj-error can then, by the same reasons as above, be estimated as

iwﬂwoséz(nk)w W = eult (1)

and tends again like &'(€) to zero. The difference is that the dimension of the space
spanned by the functions (1.2) for which (1.10) holds, now increases only like

~ |loge|¢le™!, (1.12)

This shows that a comparatively slow growth of the smoothness can help to re-
duce the complexity substantially, an observation that forms the basis of sparse grid
techniques. Due to the presence of the logarithmic term, the applicability of such
methods is, however, still limited to moderate space dimensions.

Because of the Pauli principle, physically admissible wave functions have typical
symmetry properties that will later be discussed in detail. Such symmetry prop-
erties represent a possibility to escape from this dilemma without forcing up the
smoothness requirements further, a fact that has first been noted by Hackbusch [39]
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and is basic for the present work. Assume that the functions u to be approximated
are antisymmetric with respect to the exchange of their variables, that is, that

u(Px) = sign(P)u(x) (1.13)

holds for all permutation matrices P. It is not astonishing that symmetry properties
such as the given one are immediately reflected in the expansion (1.4). Let

_ 1 .
o(k,x) = Nz ;mgn(P)(p(k,Px) (1.14)

denote the renormalized, antisymmetric parts of the functions (1.2), where the sums
extend over the d! permutation matrices P of order d. By means of the corresponding

permutations 7 of the indices 1,...,d, they can be written as determinants
= Ssin ][]
sign(7) | | O, (xr(i)) (1.15)
d' % i '

and easily evaluated in this way. For the functions u in the given symmetry class,
many terms in the expansion (1.4) can be combined. It finally collapses into

u(x) = Z (uaa(k’ '))a(k»x)v (1.16)

ky>..>ky

where the expansion coefficients are the Ly-inner products of u with the correspond-
ing functions (1.14). The number of basis functions needed to reach a given accuracy
is reduced by more than the factor d!, a significant gain. It can be shown (see Chap. 8
for details) that the number of ordered sequences k; > k > ... > k, of natural num-
bers that satisfy the condition (1.10) and with that also the number of basis function
(1.14) needed to reach the accuracy €'(€) does not increase faster than

pE (1.17)

~

independent of d, where ¥ > 0 is an arbitrarily chosen small number. In cases such
as the given one the rate of convergence in terms of the number of basis functions
needed to reach a given accuracy becomes independent of the space dimension.

The present work is motivated by these observations. It has the aim to transfer
these techniques from our simple model problem to the electronic Schrodinger equa-
tion and to establish a mathematically sound basis for the development of numerical
approximation methods. One may wonder that this can work considering all the sin-
gularities in the Schrodinger equation. The deeper reason for that is that the terms
of which the interaction potentials are composed depend only on the coordinates
of one or two electrons. This and the symmetry properties enforced by the Pauli
principle suffice to show that the admissible solutions of the electronic Schrodinger
equation fit into the indicated framework.
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The Pauli principle is a basic physical principle that is associated with the indis-
tinguishability of electrons and is independent of the Schrodinger equation. It is of
fundamental importance for the structure of matter. Electrons have an internal prop-
erty called spin that behaves in many respects like angular momentum. Although
spin does not explicitly appear in the electronic Schrodinger equation, it influences
the structure of atoms and molecules decisively. The spin o; of an electron can attain
the two values +1/2. Correspondingly, the true wave functions are of the form

v:RHY > {=1/2,1/2}" = R: (x,0) — y(x,0), (1.18)

that is, depend not only on the positions x;, but also on the spins o; of the elec-
trons. The Pauli principle states that only those wave functions y are admissible
that change their sign under a simultaneous exchange of the positions x; and x; and
the spins o; and o; of two electrons i and J, i.e., are antisymmetric in the sense that

y(Px,Po) = sign(P)y(x,0) (1.19)

holds for arbitrary simultaneous permutations x — Px and ¢ — Po of the electron
positions and spins. The Pauli principle forces the admissible wave functions to van-
ish where x; = x; and o; = g for i # j. Thus the probability that two electrons i and
J with the same spin meet is zero, a purely quantum mechanical effect. The admis-
sible solutions of the electronic Schrodinger equation are those that are components

w: (RN = R:x — y(x,0) (1.20)

of an antisymmetric wave function (1.18). They are classified by the spin vector o,
being antisymmetric with respect to every permutation of the electrons that keeps
o fixed. We will discuss these interrelations in Chap. 4 and will study the different
components (1.20) separately. Let ¢ be a spin vector that remains fixed throughout,
and let /_ and I, be the sets of the indices i of the electrons with spin 6; = —1/2
and 0; = +1/2. To both index sets we assign a norm that can best be expressed in
terms of the Fourier transforms of the considered functions and is given by

N 12 12
leell? =/<|+z‘1‘% )H(H% )|ﬁ(a))|2dw. (121)

These two norms are combined to a norm that is defined by
leel® = Mleell® + el (1.22)

The momentum vectors @; € R? form together the vector o € (R3)V. Their eu-
clidean length is |;|. The quantity Q fixes a characteristic length scale that will be
discussed below. The norm given by (1.22) is related to the norm (1.9) and mea-
sures mixed derivatives whose order increases with the number of the electrons. It is
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first only defined for the functions in the space Z2(0o) of the infinitely differentiable
functions u with compact support that are antisymmetric in the described sense but
can be extended to the space X' (o), the completion of 2(o) under this norm. The
space X' (o) is a subspace of the Sobolev space H' consisting of functions that
possess high-order mixed weak derivatives.

Our first result, which originates in the papers [92,94] of the author and will be
proven in Chap. 6, is that the eigenfunctions u of the Schrodinger operator (1.1) of
corresponding (anti-)symmetry for eigenvalues below the ionization threshold, i.e.,
the infimum of the essential spectrum, are contained in X' (). This means that they
possess mixed weak derivatives whose order increases with the number of electrons.
The norm (1.22) of these eigenfunctions can be explicitly estimated in terms of the
Ly-norm of the eigenfunctions. If Q > C+/N max(N,Z) is chosen

el < 2ve ||ullo (1.23)

holds, where Z denotes the total charge of the nuclei and C is a generic constant de-
pending neither on the number of the electrons nor on the number, the position, nor
the charge of the nuclei. Conversely, there is a minimum Q < C /N max(N, Z) such
that (1.23) holds for all these eigenfunctions independent of the associated eigen-
value. There are hints that this €2 behaves like the square root of the ground state
energy. The estimate (1.23) depends on the partial antisymmetry of the eigenfunc-
tions, particularly on the fact that the admissible wave functions vanish at many of
the singular points of the electron-electron interaction potential, everywhere where
electrons with the same spin meet. Only small portions of the frequency domain
thus contribute substantially to the admissible eigenfunctions. This remark can be
quantified with help of the notion of hyperbolic crosses, hyperboloid-like regions in
the momentum space that consist of those @ for which

H<l+‘%2)+]—[(l+|%2) sé, (1.24)

i€l i€l

with € > 0 given. If ue denotes that part of the wave function whose Fourier trans-
form coincides with that of « on this domain and vanishes outside of it, the H'-error

[ —uelly < €lu— uell| < &lflull (1.25)

tends to zero like €'(g) with increasing size of the crosses. This estimate is a first
counterpart to the estimate (1.11) in the analysis of our model problem.

These observations, however, do not suffice to break the curse of dimensionality.
As is known from [20] and is proven in Chap. 5, the eigenfunctions « for eigenvalues
A below the infimum X (o) of the essential spectrum decay exponentially, the decay
rate depending on the eigenfunction. Let R > 0 satisfy the estimate

I Z(c)—A
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that is, let it be big enough compared to the size of the gap between A and X(0),
and define the correspondingly exponentially weighted eigenfunction as

ulx) = exp(é ’%’)u(x) (1.27)

The weighted eigenfunction « is then not only square integrable, as follows from
[20], it also belongs to the space X' (o) and moreover satisfies the estimate

]l < 2/ [li]lo- (1.28)

This is shown in Chap. 6 along with the proof of (1.23). The parameter £2 scaling
the frequencies is the same as before, common to all eigenfunctions for eigenvalues
below the essential spectrum. In the limit of R tending to infinity (1.28) reduces
to the estimate (1.23). With that the corresponding mixed derivatives of the given
eigenfunctions decay exponentially in the Ly-sense. The estimate relates the decay
of the eigenfunctions in the position and the frequency space to one another, i.e.,
their spatial extension and the length scales on which they vary. Estimates like (1.23)
and (1.28) are characteristic for products of three-dimensional orbitals. Our results
show that the solutions of the full Schrodinger equation behave in the same way and
justify in this sense the picture of atoms and molecules that we have in our minds.
Estimates like (1.28) have striking consequences for the approximability of elec-
tronic wave functions and limit the complexity of the quantum-mechanical N-body
problem. The idea is to expand the eigenfunctions of the electronic Schrodinger
operator (1.1) into products of the eigenfunctions of three-dimensional operators

—A+V, lim V(x) = +oo, (1.29)

|| —re0

like the Hamilton operator of the harmonic oscillator with a locally square integrable
potential V > 0, tending to infinity for its argument tending to infinity. The essential
spectrum of such operators is empty so that they possess a complete Lp-orthonormal
system of eigenfunctions ¢y, ¢, ¢s,... for eigenvalues 0 < A; < A, <.... Every
L-function u : R? — R can therefore be represented as Ly-convergent series

N N
u(x) = 3, atk) [Tow(xi), k) = (u, 1'[@,). (1.30)
keNN i=1 i=1

The speed of convergence of this expansion is examined in Chaps. 7 and 8 for the
given eigenfunctions u of the Schrodinger operator (1.1) under the condition

V(x) < Vi(x)?, V,-*(x):%exp(’%‘), (131)
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limiting the growth of the potential V, with R the length scale from (1.26) describing
the decay of the considered eigenfunctions and Ag a constant basically independent
of R. The result can again be best described in terms of a kind of norm estimate

S(S ) (Mg + M) AP < swa. a2

k l€I+

where the weight function W = W_ + W, is composed of the two parts

W = ( +Z’—’ >:eli<l+|%*’2) (1.33)

and Q chosen as in the estimates (1.23) or (1.28). Interestingly, the right hand side of
this estimate solely depends on the decay behavior of the considered eigenfunction.
The crucial point is the appearance of the two products of the eigenvalues A in
the estimate (1.32). These products grow similar to factorials. The reason is that the
eigenvalues A; of corresponding operators (1.29) increase polynomially like

A > ko3 (1.34)

for potentials that grow sufficiently fast, at least as fast as polynomials. The three
comes from the fact that we start from an expansion into products of three-dimen-
sional eigenfunctions. The constant o < 2 is related to the growth behavior of the
potential V. It can come arbitrarily close to a = 2 for correspondingly chosen poten-
tials. Let € > 0 be given and consider the finite dimensional space that is spanned
by the correspondingly antisymmetrized tensor products of the three-dimensional
eigenfunctions ¢, for which the associated eigenvalues A, satisfy the estimate

+ — (1.35)
ile—ll :le-II _Q2 82

Let ue be the L-orthogonal projection of one of the given solutions u of the
Schridinger equation onto this space. Moreover, let

N A R
il = 3 ( % ¢ ) 1w (136
k i=1

Since ug is the part of the expansion (1.30) of u associated with the selected product
functions, respectively the eigenvalues Ay, for which (1.35) holds,

[l — uel| < €ffu—uell] < effull- (1.37)

As the norm given by (1.36) dominates the H'-norm up to a rather harmless con-
stant, this means that u, approximates the solution with an H'-error of order € if one
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lets € tend to zero. The parameter € determines the size of the hyperbolic crosses
(1.35). Therefore only a very small portion of the product eigenfunctions substan-
tially contributes to the considered wave functions and a surprisingly high rate of
convergence, related to the space dimension 3/, can be achieved.

One can even go a step further. Assume that the potential V in the three-
dimensional operator (1.29) is rotationally symmetric. The eigenfunctions, now
labeled by integers n,£ > 0 and |m| < ¢, are then of the form

Buin() = Fu)YP ), 7 =[x, (1.38)

where the radial parts f,¢ as well as the assigned eigenvalues A,; do not depend on
the index m and the Y;" are the spherical harmonics, functions that are homogeneous
of degree zero and thus depend only on the angular part x/r of x. The L;-orthogonal
expansion (1.30) of a square integrable function u : (R3)Y — R becomes then

= Y, i(n, m)l'[¢,,zm,(x. (1.39)

n.t.m

where n, £, and m are multi-indices here. Define now the L;-orthogonal projections

(Q(e7m)u)( ) zu(n e m) l—[¢rl[m, Xl (140)

n

in which the angular parts are kept fixed and the sum extends only over the corre-
sponding radial parts. These projections are in fact independent of the chosen three-
dimensional operator and can be defined without recourse to the given eigenfunction
expansion. They map the Sobolev space H' into itself. For all functions in i

lull} = Y 1@, m)ul3, (1.41)
l.m

as is shown in Chap. 9. The point is that for the eigenfunctions u of the electronic
Schrodinger operator (1.1) of corresponding antisymmetry the expression

22{1’[ (1+6+0) + [T +a@+ ))}||Q(e,m)u||% (1.42)

m i€l i€ly

remains finite. This is another important consequence from the regularity theory
from Chap. 6. It states that only few of the projections contribute significantly to an
admissible solution of the electronic Schridinger equation and estimates the speed
of convergence of the expansion (1.39) in terms of the angular momentum quantum
numbers ¢;. To reach an H'-error of order &(¢€) hence it suffices to restrict oneself
to the contributions of the tensor products of eigenfunctions ¢,,¢,, for which
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[TO+a@+n) + [TO+a@+1) < =, (1.43)
iel_ il €
An-[- An'[- 1
125 + []-55 < = (1.44)
i€l Qz IlE-I[+ Qz 62

provided the potential V is adapted as described to the considered eigenfunction.
The condition (1.43) represents an additional selection principle that can help
substantially reduce the number of the antisymmetrized tensor products of eigen-
functions that are needed to reach a given accuracy. The expansion into tensor
products of Gauss functions forms an example for the efficacy of such measures.

The final result is truly surprising. Our estimates demonstrate that the rate of
convergence expressed in terms of the number of correspondingly antisymmetrized
tensor products of the three-dimensional eigenfunctions involved astonishingly does
not deteriorate with the space dimension 3N or the number N of electrons. It is
almost the same as that for a one-electron problem for the case that all electrons
have the same spin, and almost the same as that for a problem with two electrons
otherwise. What that means for the numerical solution of the Schrédinger equation
is not clear so far, but our considerations show at least that the complexity of the
quantum-mechanical N-body problem is much lower than generally believed.

Keeping the intended audience in mind, the exposition starts with a short chapter
on Fourier analysis and spaces of weakly differentiable functions. The third chapter
gives a short introduction to quantum mechanics that is tailored to the later needs.
An interesting point for physicists and chemists might be that we start from the
weak form of the Schrodinger equation, an approach that is common in the the-
ory of partial differential equations but less in the given context. Chapter 4 deals
with the electronic Schrodinger equation itself, formulates it precisely, and embeds
it into a functional analytic framework. As indicated we consider the spin compo-
nents of the eigenfunctions separately and do not exploit the symmetry properties of
the problem to the maximum extent. This approach is enforced by the distinct regu-
larity properties of the components. Chapter 5 contains a short introduction to some
notions from spectral theory, that are rewritten here in terms of the bilinear forms
underlying the weak form of the eigenvalue problem, and discusses the Rayleigh-
Ritz method for the approximate calculation of the eigenvalues and eigenfunctions.
We characterize the infimum of the essential spectrum in the spirit of Agmon [3]
and Persson [65] and prove a simple but for us basic result on the exponential decay
of the eigenfunctions. The Chaps. 6 to 9 form the core of this work. They contain a
lot of unpublished material going far beyond [92] and [94]. The results we have just
sketched are derived and proven there in detail.



