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Foreword

More than a generation of German-speaking students around the world have worked their
way to an understanding and appreciation of the power and beauty of modern theoretical
physics — with mathematics, the most fundamental of sciences — using Walter Greiner’s
textbooks as their guide.

The idea of developing a coherent, complete presentation of an entire field of science
in a series of closely related textbooks is not a new one. Many older physicists remember
with real pleasure their sense of adventure and discovery as they worked their ways
through the classic series by Sommerfeld, by Planck and by Landau and Lifshitz. From
the students’ viewpoint, there are a great many obvious advantages to be gained through
use of consistent notation, logical ordering of topics and coherence of presentation; beyond
this, the complete coverage of the science provides a unique opportunity for the author to
convey his personal enthusiasm and love for his subject.

The present five volume set, Theoretical Physics, is in fact only that part of the
complete set of textbooks developed by Greiner and his students that presents the quantum
theory. I have long urged him to make the remaining volumes on classical mechanics and
dynamics, on electromagnetism, on nuclear and particle physics, and on special topics
available to an English-speaking audience as well, and we can hope for these companion
volumes covering all of theoretical physics some time in the future.

What makes Greiner’s volumes of particular value to the student and professor alike
is their completeness. Greiner avoids the all too common “it follows that...” which conceals
several pages of mathematical manipulation and confounds the student. He does not hesi-
tate to include experimental data to illuminate or illustrate a theoretical point and these
data, like the theoretical content, have been kept up to date and topical through frequent
revision and expansion of the lecture notes upon which these volumes are based.

Moreover, Greiner greatly increases the value of his presentation by including some-
thing like one hundred completely worked examples in each volume. Nothing is of greater
importance to the student than seeing, in detail, how the theoretical concepts and tools
under study are applied to actual problems of interest to a working physicist. And, finally,
Greiner adds brief biographical sketches to each chapter covering the people responsible
for the development of the theoretical ideas and/or the experimental data presented. It
was Auguste Comte (1798-1857) in his Positive Philosophy who noted, “To understand a
science it is necessary to know its history”. This is all too often forgotten in modern physics
teaching and the bridges that Greiner builds to the pioneering figures of our science upon
whose work we build are welcome ones.



Greiner’s lectures, which underlie these volumes, are internationally noted for their
clarity, their completeness and for the effort that he has devoted to making physics an
integral whole; his enthusiasm for his science is contagious and shines through almost
every page.

These volumes represent only a part of a unique and Herculean effort to make all of
theoretical physics accessible to the interested student. Beyond that, they are of enormous
value to the professional physicist and to all others working with quantum phenomena.
Again and again the reader will find that, after dipping into a particular volume to review
a specific topic, he will end up browsing, caught up by often fascinating new insights and
developments with which he had not previously been familiar.

Having used a number of Greiner’s volumes in their original German in my teaching
and research at Yale, I welcome these new and revised English translations and would
recommend them enthusiastically to anyone searching for a coherent overview of physics.

D. Allan Bromley

Henry Ford II Professor of Physics
Yale University

New Haven, CT USA
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Preface

Theoretical physics has become a many-faceted science. For the young student it is diffi-
cult enough to cope with the overwhelming amount of new scientific material that has to
be learned, let alone obtain an overview of the entire field, which ranges from mechanics
through electrodynamics, quantum mechanics, field theory, nuclear and heavy-ion sci-
ence, statistical mechanics, thermodynamics, and solid-state theory to elementary-particle
physics. And this knowledge should be acquired in just 8—10 semesters, during which, in
addition, a Diploma or Master’s thesis has to be worked on or examinations prepared for.
All this can be achieved only if the university teachers help to introduce the student to
the new disciplines as early on as possible, in order to create interest and excitement that
in turn set free essential, new energy. Naturally, all inessential material must simply be
eliminated.

At the Johann Wolfgang Goethe University in Frankfurt we therefore confront the
student with theoretical physics immediately, in the first semester. Theoretical Mechanics
I and II, Electrodynamics, and Quantum Mechanics I — An Introduction are the basic
courses during the first two years. These lectures are supplemented with many math-
ematical explanations and much support material. After the fourth semester of studies,
graduate work begins, and Quantum Mechanics II — Symmetries, Statistical Mechanics
and Thermodynamics, Relativistic Quantum Mechanics, Quantum Electrodynamics, the
Gauge Theory of Weak Interactions, and Quantum Chromodynamics are obligatory. Apart
from these, a number of supplementary courses on special topics are offered, such as
Hydrodynamics, Classical Field Theory, Special and General Relativity, Many-Body The-
ories, Nuclear Models, Models of Elementary Particles, and Solid-State Theory. Some of
them, for example the two-semester courses Theoretical Nuclear Physics and Theoretical
Solid-State Physics, are also obligatory.

The form of the lectures that comprise Quantum Mechanics — Symmetries follows
that of all the others: together with a broad presentation of the necessary mathematical
tools, many examples and exercises are worked through. We try to offer science in as
interesting a way as possible. With symmetries in quantum mechanics we are dealing
with a particularly beautiful theme. The selected material is perhaps unconventional, but
corresponds, in our opinion, to the importance of this field in modern physics.

After a short reminder of some symmetries in classical mechanics, the great impor-
tance of symmetries in quantum mechanics is outlined. In particular, the consequences of
rotational symmetry are described in detail, and we are soon led to the general theory of
Lie groups. The isospin group, hypercharge, and SU(3) symmetry and its application in
modern elementary-particle physics are broadly outlined. Essential mathematical theorems
are first quoted without proof and heuristically illustrated to show their importance and
meaning. The proof can then be found in detailed examples and worked-out exercises.

Vil



A mathematical supplement on root vectors and classical Lie algebras deepens the
material, the Young-tableaux technique is broadly outlined, and, by way of a chapter
on group characters and another on charm, we lead up to very modern questions of
physics. Chapters on special discrete symmetries and dynamical symmetries round off
these lectures. These are all themes which fascinate young physicists, because they show
them that as early as the fifth semester they can properly address and discuss questions of
frontier research.

Many students and collaborators have helped during the years to work out examples
and exercises. For this first English edition we enjoyed the help of Maria Berenguer,
Snjezana Butorac, Christian Derreth, Dr. Klaus Geiger, Dr. Matthias Grabiak, Carsten
Greiner, Christoph Hartnack, Dr. Richard Herrmann, Raffael Matiello, Dieter Neubauer,
Jochen Rau, Wolfgang Renner, Dirk Rischke, Thomas Schonfeld, and Dr. Stefan Schramm.
Miss Astrid Steidl drew the graphs and prepared the figures. To all of them we express
our sincere thanks. We are also grateful to Dr. K. Langanke and Mr. R. Koénning of the
Physics Department of the University in Miinster for their valuable comments on the
German edition.

We would especially like to thank Mr. Béla Waldhauser, Dipl.-Phys., for his overall
assistance. His organizational talent and his advice in technical matters are very much
appreciated.

Finally, we wish to thank Springer-Verlag; in particular, Dr. H.-U. Daniel, for his
encouragement and patience, and Mr. Michael Edmeades, for expertly copy-editing the
English edition.

Frankfurt am Main Walter Greiner
July 1989 Berndt Miiller
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1. Symmetries in Quantum Mechanics

1.1 Symmetries in Classical Physics

Symmetries play a fundamental role in physics, and knowledge of their presence in certain
problems often simplifies the solution considerably. We illustrate this with the help of three
important examples.

a) Homogeneity of Space. We assume space to be homogeneous, i.e. of equal structure
at all positions r. This is synonymous with the assumption that space is invariant under
translations, because in this case the area surrounding any point can be mapped exactly by
a translation from a similar area surrounding an arbitrary point (Fig. 1.1). This “translation
invariance” implies the conservation of momentum for an isolated system. Here we define
homogeneity of space to mean that the Lagrange function L(r;,#;,t) of a system of parti-
cles remains invariant if »; is replaced by »; + a, where a is an arbitrary constant vector.
(A more general concept of “homogeneity of space” would require only the invariance of
the equations of motion under spatial translations. In this case a conserved quantity can
also be shown to exist, but it is not necessarily the canonical momentum. See Exercises
1.3 and 1.5 for a detailed discussion of this aspect.) Thus
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must be valid. Since a is arbitrary this implies
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Here we have abbreviated
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the gradient of L with respect to r;. From the Euler-Lagrange equations

it follows immediately with (1.2) that
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where P, is the 2 component of the total momentum
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Fig. 1.1. Homogeneity or transla-
tional invariance of space means
that the area around P follows
from that of any other arbitrary
point (e.g. Pi, P, ...) by transla-
tions (a‘, a, ... )
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This is the law of momentum conservation in classical mechanics. In nonrelativistic physics,
it allows for the definition of a centre of mass. This is due to the fact that this law holds
in all inertial systems, because in all of these space is homogeneous. Let P = 3. m;v;
denote the total momentum in the system K. Then in the system, K’, which moves with

the velocity v with respect to K, it is given by
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because nonrelativistically v} = v; — v. The centre-of-mass system is defined by the
condition that the total momentum P’ vanishes. In K it moves with the velocity
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where

a= (gmet)  (£m)

is the coordinate of the nonrelativistic centre of mass.

b) Homogeneity of Time. The homogeneity of time has no less importance than the
homogeneity of space. It stands for the invariance of the laws of nature in isolated systems
with respect to translations in time, i.e. at time ¢ +t¢ they have the same form as at time ¢.
This is expressed mathematically by the fact that the Lagrange function does not depend
on time explicitly, i.e.

L= L(g;>¢i) - (1.6)
Then it follows that
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[Note that if L depends explicitly on time, the term &L/3t has to be added on the right-hand
side (rhs) of (1.7).]
Making use of the Euler-Lagrange equations
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or



