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Preface

Source coding theory has as its goal the characterization of the optimal
performance achievable in idealized communication systems which must
code an information source for transmission over a digital communication
or storage channel for transmission to a user. The user must decode the
information into a form that is a good approximation to the original. A code
is optimal within some class if it achieves the best possible fidelity given
whatever constraints are imposed on the code by the available channel. In
theory, the primary constraint imposed on a code by the channel is its rate
or resolution, the number of bits per second or per input symbol that it can
transmit from sender to receiver. In the real world, complexity may be as
important as rate.

The origins and the basic form of much of the theory date from Shan-
non’s classical development of noiseless source coding and source coding
subject to a fidelity criterion (also called rate-distortion theory) [73] [74].
Shannon combined a probabilistic notion of information with limit theo-
rems from ergodic theory and a random coding technique to describe the
optimal performance of systems with a constrained rate but with uncon-
strained complexity and delay. An alternative approach called asymptotic
or high rate quantization theory based on different techniques and approx-
imations was introduced by Bennett at approximately the same time [4].
This approach constrained the delay but allowed the rate to grow large.

The goal of both approaches was to provide unbeatable bounds to the
achievable performance using realistic code structures on reasonable mathe-
matical models of real-world source coding systems such as analog-to-digital
conversion, data compression, and entropy coding. The original theory
dealt almost exclusively with a particular form of code—a block code or,
as it is sometimes called in current applications, a vector quantizer. Such
codes operate on nonoverlapping blocks or vectors of input symbols in a
memoryless fashion, that is, in a way that does not depend on previous
blocks. Much of the theory also concentrated on memoryless sources or
sources with very simple memory structure. These results have since been

ix
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extended to a variety of coding structures and to far more general sources.
Unfortunately, however, most of the results for nonblock codes have not ap-
peared in book form and their proofs have involved a heavy dose of measure
theory and ergodic theory. The results for nonmemoryless sources have also
usually been either difficult to prove or confined to Gaussian sources.

This monograph is intended to provide a survey of the Shannon coding
theorems for general sources and coding structures along with a treatment
of high rate vector quantization theory. The two theories are compared
and contrasted. As perhaps the most important special case of the the-
ory, the uniform quantizer is analyzed in some detail and the behavior of
quantization noise is compared and contrasted with that predicted by the
theory and approximations. The treatment includes examples of uniform
quantizers used inside feedback loops. In particular, the validity of the
common white noise approximation is examined for both Sigma-Delta and
Delta modulation. Lattice vector quantizers are also considered briefly.

Much of this manuscript was originally intended to be part of a book
by Allen Gersho and myself titled Vector Quantization and Signal Com-
pression which was originally intended to treat in detail both the design
algorithms and performance theory of source coding. The project grew too
large, however, and the design and applications-oriented material eventu-
ally crowded out the theory. This volume can be considered as a theoretical
companion to Vector Quantization and Signal Compression, which will also
be published by Kluwer Academic Press.

Although a prerequisite graduate engineering level of mathematical so-
phistication is assumed, this is not a mathematics text and I have been
admittedly somewhat cavalier with the mathematical details. The argu-
ments always have a solid foundation, however, and the interested reader
can pursue them in the literature. In particular, a far more careful and
detailed treatment of most of these topics may be found in my manuscript
Mathematical Information Theory.

The principal existing text devoted to source coding theory is Berger’s
book on rate-distortion theory [5]. Gallager’s chapter on source coding in
(28] also contains a thorough and oft referred-to treatment. Topics treated
here that are either little treated or not treated at all in Berger and Gallager
include sliding-block codes, feedback and finite-state codes, trellis encoders,
synchronization of block codes, high rate vector quantization theory, pro-
cess definitions of rate-distortion functions, uniform scalar quantizer noise
theory, and Sigma-Delta and Delta modulation noise theory in scalar quan-
tization (or PCM), in Sigma-Delta modulation, and in Delta modulation.
Here the basic source coding theorem for block codes is proved without
recourse to the Nedoma decomposition used by Berger and Gallager (5],
[28]. The variational equations defining the rate-distortion function are de-
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veloped using Blahut’s approach [6], but both Gallager’s and Berger’s so-
lutions are provided as each has its uses. The Blahut and Gallager/Berger
approaches are presented in some detail and the proofs given take advan-
tage of both viewpoints. In particular, the use of calculus optimizations is
minimized by repeated applications of the divergence inequality.

The primary topic treated by Berger and Gallager and not included
here is that of continuous time source coding theory. Noiseless coding is
also not treated here as it is developed in the companion volume as well
as in most information theory texts (as well as texts devoted entirely to
noiseless coding, e.g., [77].)

This book is intended to be a short but complete survey of source cod-
ing theory, including rate-distortion theory, high rate quantization theory,
and uniform quantizer noise theory. It can be used in conjunction with
Vector Quantization and Signal Compression in a graduate level course to
provide either background reading on the underlying theory or as a supple-
mentary text if the course devotes time.to both the theory and the design
of vector quantizers. When I teach an “Advanced Topics” course on data
compression, I proceed from a brief review of the prerequisite random pro-
cess material into Part III of Vector Quantization and Signal Compression,
that is, directly into the development of code design algorithms for vector
quantizers. I treat the design material first as this is usually the preferred
material for term papers or projects. The second half of the course is then
devoted to Chapters 3, 4, and 5 of this book. Portions of Chapter 6 are
treated if time permits and are used to point out the shortcomings of the
asymptotic approximations as well as to provide an introduction into the
theory of oversampled analog-to-digital converters.

Robert M. Gray
Stanford, California
July 1989
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Chapter 1
Information Sources

An information source is modeled mathematically as a discrete time ran-
dom process, a sequence of random variables. This permits the use of all of
the tools of the theory of probability and random processes. In particular,
it allows us to do theory with probabilistic averages or expectations and
relate these to actual time average performance through laws of large num-
bers or ergodic theorems. Such theorems describing the long term behavior
of well behaved random systems are crucial to such theoretical analysis.
Relating expectations and long term time averages requires an understand-
ing of stationarity and ergodic properties of random processes, properties
which are somewhat difficult to define precisely, but which usually have a
simple intuitive interpretation. These issues are not simply of concern to
mathematical dilettants. For example, stationarity can be violated by such
commonly occurring phenomena as transients and variable length coding,
yet sample averages may still converge in a useful way. In this chapter we
survey some of the key ideas from the theory of random processes. The
chapter strongly overlaps portions Chapter 2 of Gersho and Gray [30] and
is intended to provide the necessary prerequisites and establish notation.
The reader is assumed to be familiar with the general topics of probability
and random processes and the chapter is intended primarily for reference
and review. A more extensive treatment of basic random processes from a
similar point of view may be found in [40] and [37].

1.1 Probability Spaces

The basic building block of the theory of probability and random processes
is the probability space or ezperiment, a collection of definitions and axioms
which yield the calculus of probability and the basic limit theorems relating

1



2 CHAPTER 1. INFORMATION SOURCES

expectations and sample averages. For completeness we include the basic
definitions and examples. A probability space (2, F,P) is a collection of
three things:

Q An abstract space § called the sample space. Intuitively this is a listing
of all conceivable outcomes of the experiment.

F A nonempty collection of subsets of Q called events which has the fol-
lowing properties:

1. If F € F, then also F¢ € F, that is, if the set F' is in the
collection F, then so is its complement F* = {w :w ¢ F}.

2. fF; € F,i=1,2,..., then also | J; F; € F, that is, if a (possibly
infinite) collection of sets F; belong to the collection F, then so
does the union | J; F; € F = {w : w € F; for some i}.

It follows from the above conditions that € F, i.e., the set “some-
thing happens” is an event, and the null set § = Q¢ (“nothing hap-
pens”) is an event. A collection F of subsets of Q with these proper-
ties is called an event space or a o-field. It is a standard result that
the above two conditions imply that any sequence of complements,
unions, or intersections of events (members of F) yields another event.
This provides a useful algebraic structure to the collection of sets for
which we wish to define a probability measure.

P A probability measure on an event space F of subsets of a sample space
Q2 is an assignment of a real number P(F) to every F in F which
satisfies the following rules (often called the azioms of probability):

1. P(F) > 0 for all F € F, that is, probabilities are nonnegative.

2. P(92) = 1, that is, probability of the entire sample space (“some-
thing happens”) is 1.

3. If events Fj, i = 1,2,... are disjoint, that is, if F;(F; = {w :
w € F; and w € F;} = 0 for all i # j, then

PR =Y PRy

that is, the probability of the union of a sequence of disjoint
events is the sum of the probabilities.

It is important to note that probabilities need be defined only for events
and not for all subsets of the sample space. The abstract setup of a
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probability space becomes more concrete if we consider the most important
special cases. One basic example is the case where = R = (—o00,0),
the real line. The most useful event space in this case is called the Borel
field and is denoted B(R). We will not delve into the theoretical details
of Borel fields, but we shall point out that it contains all of the subsets
of the real line that are sufficiently “nice” to have consistent probabilities
defined on them, e.g., all intervals and sets constructable by sequences of
complements, unions, and intersections of intervals. It is a basic result of
measure theory, however, that the Borel field does not contain all subsets
of the real line. The members of the Borel field, that is, the events in the
real line, are called Borel sets.

Suppose that we have a real valued function f defined on R with the
following properties:

1. f(r)>0,alreRr,

2. ffooo f(r)dr=1.

Then the set function P defined by

P(F)= -/Ff(r) dr

1s a probability measure and the function f is called a probability density
function or pdf since it is integrated to find probability. There is more going
on here than meets the eye and a few words of explanation are in order.
Strictly speaking, the above claim is true only if the integral is considered as
a Lebesgue integral rather than as the Riemann integral familiar to most
engineers. As is. discussed in some length in [40], however, this can be
considered as a technical detail and Riemann calculus can be used without
concern provided that the Riemann integrals make sense, that is, can be
evaluated. If the Riemann integral is not well defined, then appropriate
limits must be considered. Some of the more common pdf’s are listed
below. The pdf’s are 0 outside the listed domain. b > a, A > 0, m, and
o > 0 are real-valued parameters which specify the pdf’s.

The uniform pdf f(r) =1/(b—a) for r € [a,8] = {r: a <r < b}.
The exponential pdf f(r) = Ae=*"; r > 0.

The doubly exponential or Laplacian pdf f(r) = %e"‘"'; reR.

The Gaussian pdf f(r) = (2n02)~1/2e~(r=m)*/20 . c R
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A similar construction works when Q is some subset of the real line
instead of the entire real line. In that case the appropriate event space
comprises all the Borel sets in Q. For example, we could define a prob-
ability measure on ([0, 0), B([0, 00))), where B([0,c0)) denotes the Borel
sets in [0, 00), using the exponential pdf. Obviously we could either define
this experiment on the entire real line using a pdf that is 0 for negative
numbers and exponential on nonnegative numbers or we could define it on
the nonnegative portion of the real line using a pdf that is an exponential
everywhere. This is strictly a matter of convenience. Another common
construction of a probability measure arises when all of the probability sits
on a discrete subset of the real line (or any other sample space). Suppose
that ' is an arbitrary sample space and F a corresponding event space.
Suppose that an event Q C €' consists of a finite or countably infinite col-
lection of points. (By countably infinite we mean a set that can be put into
one-to-one correspondence with the nonnegative integers, e.g., the nonneg-
ative integers, the integers, the even integers, and the rational numbers.)
Suppose further that we have a function p defined for all points in Q which
has the following properties:

1. pw)>0allw e Q.

2. Y peap(w)=1.
Then the set function P defined by

P(F)= Y pw)

weF(n

is a probability measure and the function p is called a probability mass
function or pmf since one adds the probability masses of points to find
the overall probability. That P defined as a sum over a pmf is indeed a
probability measure follows from the properties of sums. (It is also a special
case of the Lebesgue integral properties.) Some of the more common pmf’s
are listed below. The pmf’s p(w) are specified in terms of parameters: p
is a real number in (0,1), n is a positive integer, and ) is a positive real
number.

The binary pmf Q = {0,1}. p(1) = p, p(0) = 1 — p.

The uniform pmf Q = {0,1,...,n — 1}. p(k) = 1/n; k € Q.
The geometric pmf Q = {1,2,...}. p(k) = p(1 — p)*~1; k€ Q.
The Poisson pmf Q = {0,1,2,...}. p(k) = Me"*/k!; k € Q.



