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PREFACE TO THE POLISH EDITIONY

This book was planned at first, to be a textbook in the foundations of
geometry, specifically adapted to the present program of studies in this
subject in Polish universities. In the process of writing, however, the con-
ception of the work underwent some change inorder that the material in-
cluded constitute a consistent, closed entity which—as it seems to the
authors—may be of value independently of any possible changes in the
program of the course. With this aim in mind some portions of the book
(e.g. Bolyai-Lobachevskian geometry) haye been treated much more ex-
tensively than in the original outline while some others—dealing with
rather marginal problems—have been entirely omitted. The presentation
of the material is quite elementary. Even in those portions of Bolyai-
Lobachevskian geometry in which the apparatus of differential geometry
is usually applied the authors have used exclusively the most elementary
notions and methods of the calculus..On the other hand the authors con-
sidered it purposeful to introduce the general topological notions at a very

early stage of the discussion. The reader who is not familiar with topology . -

will find the necessary information in the Introdugtion (Section 9).

The book is organized as follows.

" In Part I the authors develop Fuclidean and Bolyai-Lobachevskian
geometry on the basis of an axiom system due, in principle, to Hilbert. It
should be noted at once, however, that the authors develop these geo-
_metries, in principle, as far as necessary to be able to prove them cate-
gorical, i.e., to show that the Cartesian space known from analytic geo-

_metry is up to isomorphism the only model of Euclidean geometry, and
Klein space (constructed with the help of notions known from the analytic
geometry of projective space) is up to isomorphism the only model of
Bolyai-Lobachevskian geometry. In this way two aims are achieved. First,
it is shown that each of the theories constitutes a uniquely determined

i The Polish original of this- work was published under the title Podstawy
Geometnz by Panstwowe Wydawnictwo Naukowe (Warsaw, 1955).
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scheme embracing the geoi'netrjcal properties of physical space. Secondly,
the course in geometry is developed to the point where, by the introduc-
tion of coordinates (rectangular coordinates in Euclidean geometry and
Beltrami coordinates in Bolyai-Lobachevskian geometry) it becomes pos-
sible to employ analytic methods. :

Besides: the full proof of categoricity, Part I also contains proofs of the °
consistency of both geometries and—as an example of independence
proofs—a proof of the independence of the Axiom of Continuity.

In Part II the authors develop projective geometry on the basis of an
axiom system also due, in principle, to Hilbert. In projective geometry
use is made of the theorems of Euclidean geometry, this being done by an
interpretation of a part of Euclidean geometry in projective geometry. The.
organization of the material is the same as in Part I. The theory is devel-
oped only so far as the introduction of homogeneous projective _coordi—L

_ nates in space. This gives the possibility of proving categoricity, which, in
this case, reduces to showing that the projective space known from analytic
geometry is up to isomorphism the only model of projective geometry,

In spite of such a restricted aim the book is rather extensive, This is so

- because the authors have set themselves the task of achieving a presen-
tation which does not contain any essential gaps. In this way the reader,
affer ﬁmshmg the book, can be confident that the axiom systems adopted
are indeed a sufficient basis for the construction of the entire geometry.

. Such an approach has somewhat encumbered the book, forcing the
authors—especially in the initial chapters—to give rigorous proofs of
theorems generally well known and frequently trivial. The reader well-
versed in the axiomatic treatment of elementary geometry is advised to
glance lightly through the first two chapters; and devote attention prin-
cipally to the conceptional aspects of the work.

It is worth noting that the authors have not taken up in this book the
problem. of constructing arithmetic on the basis of geometry. Their task
- was made easier by assuming the arithmetic of real numbers as a theory
preceding geometry. Analytic geometry of Cartesian sp~~<e and projective
space is regarded as a branch of arithmetic. :

In conclusion, the authors take pleasure in cordially thanking Professor
Adam Bielecki for his careful study. of the manuscript and for- making
many valuable and keen remarks Whlch have enabled them to eliminate
several errors.



PREFACE TO THE ENGLISH EDITION

The preparation of the English edition of Foundations of Geometry
_has given the authors the opportunity of introducing essential changes and
additions (as well as minor corrections).

In the Polish edition absolute geometry (the common part of Euclidean
and Bolyai-Lobachevskian geometries) was based on the Hilbert system
of primitive notions and axioms; in the English edition the Hilbert system
has been modified in several respects. Lines and planes are now treated
a$ sets of points; therefore the primitive relation of incidence is replaced
by the set-theoretical membership relation and does not appear as a pri-
"_mitive notion of geometry. This change has led to a considerable simplifi-
cation in thedogical structure of the discussion of models and categoricity.
. Furthermore, the primitive relation of congruence of segments is treated
in the present edition as a four-termed relation among points; the relation
of congruence of angles has been entirely removed from the system of
primitive notions, and this has necessitated certain changes in the axioms
of congruence. Since the authors. wished to avoid any radical changes in

‘the arrangement of the material, they did not avail themselves of the :

possibility of further limiting the system of primitive notions.

Other essential changes were made to bring out the role of the Ax1om
of Continuity and the Archimedean: Postulate. The authors endeavored
to transfer as niuch material as possible to absolute geometry.

The most essential change introduced in Bolyai-Lobachevskian geo-
metry involves the introduction of the natural basic segment and the
natural measure of segments which goes with it. This permits the calculas:

. tion of the numerical value of the constant » which. appears ina number

of formulas of this geometry:

In projective geometry, just as in absolute geometry, lines and planes
are now regarded as sets of points, whereasin the original edition, following
the traditional approach, the points, the lines, and the planes are treated
as three fundamental domaifs of discourse with equal status in the logical
structure of the theory. It should be noticed that the traditional approach,
as opposed to the present one, leads to a much simpler and more conve-

=
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nient formulation of the duality law; hence this approach would have
been advantageous if the authors had attempted a systematic develop-
ment of projective geometry. In this work, however, the authors are pri-
marily interested in carrying through simple and precise proofs of cate-
goricity, and frgm this point of view the new approach is much preferable.
i I

We wish to express our deep gratitude to Professor Alfred Tarski (Uﬁi-
versity of California, Berkeley) for his penetrating comments and criti-
cism of the Polish edition of Foundations of Geometry at the time it
appeared. To a large extent these remarks contributed to the changes
introduced in the English edition. During the final revision of the English
manuscript, Professor Tarski’s warm advice has helped us again at every °
turn. To Professor Stanislaw Jaskowski (University of Torué) we are in-.
debted for a remark which led to some simplification of the axiom system
for projective geometry. .

We are very grateful to Mr. Erwm Marquit (University of f Warsaw) for
his effort and care in preparing the English translation. We also sincerely
- appreciate the help extended to us by Professors Henry Helson (University
of California, Berkeley), Leon Henkin (University of California, Berkeley)
and Steven Orey (University of Minnesota), in connection with the final
stylistic revision of the English text.

The final revision of the manuscript of this book, both in material and
formal respects, was carried through during the academic year 1957-58.
The work was performed partly at the University of Warsaw, Poland, by -
- Karol Borsuk, and partly at the University of California, Berkeley,
U.S.A., by Wanda Szmielew, who was then engaged in a research project

on the foundations of mathematics sponsored by the U.S. National Science
Foundation. / 7

University of Warsaw, Poland , ' KAROL BORSUK

Institute for Basic Research in Science, Umverszty WANDA SZMIELEW
- of California, Berkeley, USA
May, 1958
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Introduction

\
1. Geometry before Euclid ‘

The foundations of geometry have attainéd their present clarity only
_as a result of a very long process of development which began in very
- ancient-times and concluded in the 20th century. The need for such

geometrical notions as-segment, line, angle, triangle, circle, length, area,
volume, etc. appeared as early as civilization. Even in early antiquity
we can find systematic attempts to establish relations between these
notions, and this is the beginning of geometry. The famous Rhind papyrus,
a copy of which has been preserved from the Hyksos epoch (about
1700 B.C.) testifies to the fact that at that time geometry in Egypt -
already stood at a rather high level, nevertheless was, in principal, limited
to empirically found instructions for calculating the area of a plane figure
or the volume of a solid. But only among the Greeks we find a conscious
striving to give geometry the form of a science in today’s meaning of the
word. Beginning with THALES of Milet and PyTHAGORAS of Samos (6th
century B.C.) and ending with the Greek mathematicians in Alexandria
in the period of the decline of the Roman empire (¢.g. PAPPUS of Alexan-
dria; 4th century A.D.), a long list of outstanding Greek mathematicians
contributed in an essential way to the development of geometry. 4

2. Elements.of Euclid

One of the most important events in the development of geometry
was the systematic treatment of geometry in the form of a uniform
deductive system in the work of EucLiD entitled Elements (oTotyeia) .
‘written in Alexandria about 300 B.C. If the value of a scientific work can

_ . be measured by the length of time during which it maintains its im-

portance then Elements of Euclid is the most valuable scientific book
of all time. It has appeared in innumerable editions, and through the
entire period of two thousand years has been generally considered a model
of rigor and clarity of presentation, and richness of content. Euclid set
himself the task of presenting geometry in the form of a system based on
a small number of sentences, some of which were called definitions, others
axioms, and still others postulates. The remaining statements of his work
were to be logical consequences of these three types of initial sentences.

-
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Euclid placed definitions at the beginning of each of the 13 books of
his Elements.-Thus, e.g., the deﬁmtlons with which he begins the first
book are as follows:}

A point is that which has no parf. A line is a { breadthless ) length. The
extremities of a line are points. A straight liness a line which lies evenly
with the points on itself. And so-on. .

‘As may be seen from these examples, thc definitions given by Euclid
are not definitions in today’s meaning of the word and cannot be used
in the construction of a theory. They are rather only explanations of
the notiens introduced, expressed in imprecise colloquial language
and intended to create in the mind of the reader certain mtmtwe
pictures. 0

The difference between axioms and postulates is not further explamed,
by Euclid. The sentences he cailied axioms—such as the whole is greater
than the part—have the character of statements about objecis of some
very general unspecified kind. The postulates, however, concern specific
figures and in character are like the sentences called axioms in modern
deductive theories. In modern theories the sentences corresponding to
Euclid’s axioms do not occur, and the terms axiom and postulate are
used interchangeably.

In establishing his system of definitions, axioms, and postulates, Euclid
believed that he was creating a sufficient foundation for the construetion
of geometry, i.e. for the introduction of geometrical notions and for the
deduction of their properties. It should be noted that this is not the case.
“Thus, -e.g., Euclid speaks about a point lying between two other points
despite the fact that such a relation between points cannot be defined on
the basis of his geometry; he makes essential use of the continuity of the
space despite the fact that this property cannot be-: established in his
system of geometry. Nevertheless, we are indebted to him for the first
attempt known to us to- construct an axiomatic theory.

3. Elementary Geometry After Euclid. Euclid’s Critics and
Commentators

Several years after Euclid the famous Syracusan mathematician
ARCHIMEDES supplemented the system of axioms of Euclid by a further
system of five axioms which he needed in connection with:investigations
on the length of curves, the area of surfaces, and the volume of solids.
Four of these axioms directly involve the notions of length and area;
they are superfluous if these notions are mtroduced by way of appropriate

1 All quotations from Euclid in this book are based on T. C. HEATH'S The Thirteen
Books of Euclid’s Elements, 2nd ed. (Cambridge 1926
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definitions. On the other hand, the fifth (we shall refer to it as tt.e Postulate
of Archimedes) is an explicit formulation of a property of segments on a
line; a property which was already involved in the considerations of
Euclid.

The axiomatic treatment of elementary geometry by Euclid was the
subject of investigations by many mathematicians over a period-of many
centuries. Particular interest was attached to the problem of whether the
parallel postulate (sometimes known as Euchid’s Fifth Pestulate) is neces-
sary for the construction of elementary geometry. This postulate was
formulated as follows: :

If a straight line falling (in a planc) on two straight lines makes the interior
" Samgles on the same side less than two right angles, the two siraight lines, if
produced indefinsiely, meet on that sidz on which ave the angles less than
the two right angles.

For a period of over two thousand years many attempts were made
to prove that this postulate is a logical consequence of the remaining
assumptions, and therefore that it may be omitted with no loss to the
theory. There arose a very extensive literature which contains, among
other results, various proofs of the parallel pestulate using the remaining
assumptions of Euclid together with some further assumption. For
example, it suffices to add the assumption that there exists at least one
rectangle; or that there exists at least one triangle the sum of whose
angles, is equal to two right angles. Up to the 19th century it was not
- settled whether there is.a proof of the parallel postulate based only on
the remaining assumptions of Euclid.

The most penetrating of the commentators on Euclid, the Ita.han
mathematician Gerolamo SACCHERI (1667-1733) and the Swiss mathe-
matician J. H. LAMBERT (1728-1777), consistently developed the domain
of geoffietry which did not employ the parallel postulate. In particular,
they drew attention te the theorem coneerning the sum of the angles
in a triangle. Without the aid of the paralel postulate they proved that
. this sum cannot be greater than two right angles. A little later th& French.

mathematician A. M. LEGENDRE proved this fact again. SACCHERI also
tried to prove, by deriving a contradiction, that the sum of the angles
in a triangle cannot be smaller than two tight angles, and he believed
that in this way he would be able to obtain a proof of the parallel postulate. ,
Lambert tried to show that the negation of the parallel postulate would
lead to conclusions departing too greatly from our picture of space, By
systematically investigating the logical consequences of the negation of
the parallel postulate, both these mathematicians followed a path which
“subsequently led to the discovery of what we now call non-Ewuclidean
geometry.
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4. Bolyai-Lobachevsxian Geometry

Only in the 19th century was the parallel postulate shown to be
independent of the remaining axioms and postulates of Euclid A decisive
step in this direction was made by the Russian mathematician Nikolai
Ivanovich LoBACHEVSK! (1793-1856). In 1829 he published in Kasan
his work entitled O naéalah geometrii, which contained an exposition of
a new geometry based precisely on the negation of the parallel postulate.
In the history of human thought we often meet with the phenomenon

- that great discoveries are made simultaneously and independently by
several people when the state of science and technology reaches the point
where it is ready for these developments. In the field of mathematics one
may cite as examples the discovery of differential and integral calculus
by NewrtoN and LEiBN1Z, and of analytic geometry by FERMAT and
DESCARTES. Another typical case is the discovery of non-Euclidean geome-

- try. Simultaneously with Lobachevski and completely independently of
him, the Hungarian mathematician Janos BoLyarl (1802-1860) arrived at .
similar conceptions; the work embodying his ideas, Appendix scientiam
spatii absolute veram exhibens, appeared in 1832.

It should be mentioned that still earlier the eminent German mathe-
matician Karl Friedrich Gauss (1777-1855) had arrived at the ideéa of
non-Euclidean geometry, but he never published the results of his
investigations, He feared the criticism which might be evoked by an
idea which departed so far from the ideas then accepted and sanctified
by the tradition.of many centuries. Through such an attitude, Gauss lost
priority for the discovery of non-Euclidean geometry. Gauss’s fears,
however, were not without basis. The works of Lobachevski and Bolyai

" did not receive recognition in the lifetime of their creators. On the
contrary, they were regarded as eccentric and pathological; a Russian
mathematician well known in this period went so far as to call the work
of Lobachevski a satire directed against mathematicians.

At the beginning of the‘19th century the idea of non-Euclidean geom-
etry appears quite plainly also in the works of the German mathemati-
cians F. K. SCHWEIKART (1780-1859) and F. A. TAURINUS (1794-1874).
But only Lobachevski and Bolyai have made the systematic study of
what we now call Bolyai-Lobachevskian (or hyperbolic) geometry.

5. Consistency of Geometry

Lobachevski was convinced that there were no inconsistencies in his
geometry. To show the consistency he pointed out that between the for-
mulas of his trigonometry and the formulas of the spherical trigonometry
a one-to-one correspondence can be established. By means of this corre-

“spondence the problem of consistency of his geometry can, in principle,
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be reduced to the problem of consistency of spherical geometry which can
be treated as a part of arithmetic.. However a rigorous proof of consistency
-was an impossible task at that time since, on the one hand, the foun-
dations of geometry were not yet sufficiently established, and on the other,
such general notions as axiomatic theory and consistency were not yet
precisely formulated and investigated. (These notions belong to the
methodology of deductive sciences, the systematic development of which
began only in the final years of the 19th century.)

In the period precedmg the final axiomatic approach to geometry the
basic idea of the precise proof of the consistency of Bolyai-Lobachevskian
geometry was given in 1871 by the German mathematician Felix KLEIN

- (1849-1925), who, on the basis of the earlier ideas of the Italian mathe-
.-matician Eugenio BELTRAMI (1835-1900), constructed in his work Uber
“die sogenmannte Nicht Euklidische Geometrie, Mathematische Annalen 4,
the arithmetic model of Bolyai-Lobachevskian geometry.

It was only in the year 1899, however, that David HILBERT, in the work
Grundlagen der Geometrie, gave the system of primitive notions and axioms
-of Euclidean geometry and a full proof of the consistency of this axiom
system (under the assumption of the consistency of arithmetic). In 1903,
in the work Newe Begrimdung der Bolyai-Lobalchefskyschen Geometrie,
Mathematische Annalen 57, he proved the consistency of Bolyai-Loba-
chevskian geometry in a similar manner. Thus the two geometries,
Euclidean and Bolyai-Lobachevskian, are equally correct from the
standpoint of logic. The question of whether Euclidean or Bélyai-
Lobachevskian geometry better describes real space can be settled, if at

~ all, only by way of experiment. It seems, however, that experiment could
at most confirm Bolyal-Lobachevskxan geometry, but not Euclidean
geometry. This is because Euclidean geometry is, in a sense, the limiting
case of Bolyal-Lobachevsklan geometry, and by means of experiments
based only on approximate measurements, we cannot dlstmgulsh the
limiting case from a very close approximation.

In the same period, and independently of Hilbert, investigations were
made in Italy on the foundations of geometry. In particular Mario PIERI
in his works Della geometria elementare come sistema ipotetico-dedutiivo:
Monografia del punto ¢ del moto, Memorie della R. Accademia delle
Scienze di Torino, 1899, and La geometria elementare institusta sulle nozions
di “punto” e “sfem”, Memorie di Matematica e di Fisica della Societa
Italiana delle Scienze, ser. 3,15, 1908, published two axiomatic systems
of Euclidean geometry each of which is based upon only one primitive
notion.
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#. Riemann Spaces

Simultaneously with the foundations of elementary and Bolyai-

- Lobachevskian geometry, two other branches of geometry, differential

geometry and projective geomelry were cultivated. The development of

differential geometry led the German mathematician Bernhard RIEMANN

(1826-1866) to.introduce (in 1854) a very general class of spaces now
called Riemann spaces.

Among the general Riemann spaces there stand out, in particular,
spaces with constant curvature embracing the parabolic type, corresponding
to the Euclidean space, the hyperbolic type; corresponding to the Bolyai-
Lobachevskian space, and finally, the elliptic type, corresponding to the
projective space with suitably chosen metric. ?

7. Axiomatic Theot_y

The purpose of axiomatic theory is to approach reality in an abstract
form so as to permit the highest possible degree of rigor. In constmc’ti_i:g
such a theory, the following procedure is adopted: '

- First of all, a certain system of primitive notions is chosen. Itis desirable
that these notions have the clearest possible intuitive sense. It is taken
as a principle that one may employ other notions only when they are
defined in terms of the primitive notions, either directly or indirectly by
means of previously defined notions.

Next, a certain system of sentences, called axsoms, is chosen in wluch
there are formulated some properties of the primitive notions. The axioms
should state in abstract form some relations holding. between the real
objects from which the primitive notions were abstracted. It is desirable
 that the intuitive sense of the axioms net give rise to any doubts. The
theorems of the theory are the axioms, and those sentences which are
logical consequences of theaxioms, deﬁmtmns and the theorems previously
proved. |

The geometfy in this book will be based on a system of pnmxtlve
notions and axioms which is a modﬂiea.tmn of the Hilbert system. ;

In censtructmg an axiomatic theory T we usually make use of other
axiomatic theories, which are presupposed in the following sense: all the
primitive notions-of those prosupposed theories are included in the system
of primitive notions of T, and all the axioms of those theories are included
in the axiom system of T. Mathematical theories presuppose as a rule
‘mathematical logic and usually also set theory (to a larger or smaller
extent). In developing geometry in this book we presuppose mathe-
matical logic, set theory and the arithmetic of real numbers (which can
either be treated as an independent theory or can be constructed as a
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portion of set theory). An axiomatic treatment of these three theories
can be found in various special works. We shall not list here the primitive
notions and axioms of these theories. In the next section, however, we
shall discuss briefly all the basic set-theoretical notions which are relevant
to our discussion. = :

8. Sets and Relations 4

The basic notion of set theory is that of membership. The membership
symbol € occurs in formulas like x € X, which is read % ss an element (or
a-member) of the set X, or x belongs to the sei X, or, finally, set X contains
- x (as an clement). The set with no elements will be denoted by 0 and will
be called the empty set. The set consisting of elements x4, x,, . . ., %, will
bedenoted by {#y, %y, . - ., %,}. If the elements of a set X are sets themselves
we refer to set X also as a family of sets or a class.

If every element of a set X is also an element of a set Y we write _
X c Y and we say that set X is included in set Y or set Y includes set X
(as a part) or set X is a subset of se¢ Y. We have:

XcX, :
fXcYand YcX,thenX cZ,
ifXcYand YcX,then X =Y.

For any class X, the set-theoretical sum (or union) of the sets of class X
is the set consisting of all elements which belong to at least one of the
-sets of X, while the set-theoretical product (or intersection or common part)-
of the sets of class X is the set consisting of all elements which belong to
each of the sets of X. If ¥ = {X,Y}, then the sum of the séts of class X
. isdenoted by X U Y, and their productby X N Y.Inthecase X n Y =0
we say that sets X and Y are disjoint. If to each natural number » there

~ corresponds a set X, then the sum of sets X, X,, .. 1s denoted by U X,
n =1

and the product by n X By the difference X — Y we understand -

the set composed of a.Ll elements belonging to-X, but not belonging
to Y. In case z is an element (but not a set) we shall write' X U z in-
stead of X U {2}, X — z instead of X — {z}, and X n Y = z instead of
X oY = {2},

Let us now assume that all the sets under conslderatlon are subsets
of some fixed set E, and let us denote by X’ the set E - X (called the
complement of set X to set E). We then have:



