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Preface

This book grew out of a graduate course given in the Physics Department
of the City College of New York for the first time during the 1976-1977
academic year and a series of lectures given at the Catholic University of
Louvain, at Louvain-la-Neuve, Belgium during the Spring and Summer of
1977. 1 am indebted to Professor F. Brouillard and the DYMO group at
that institution for the stimulation and hospitality provided during that
period. In both cases, the lectures were at a level that assumed only a
knowledge of elementary quantum mechanics of a typical first-year grad-
uate course. | have tried to continue that level of discussion in this book
and to make it self-contained for any discussions that go beyond that level.
In some sections of the book, the problems dealt with are too complicated
to provide the entire description here. In that case, references to the original
work are given.

I have also tried to keep the book only slightly longer than a size that
could be covered in a one-semester course in order to allow an instructor
some options. An attempt was also made to cover a wide range of topics
in atomic physics as modified by lasers with particular emphasis on scat-
tering and reactions. These two aims proved to be incompatible, so some
topics have been totally omitted (multiphoton spectroscopy, for example),
as have some methodologies (the momentum translation method for multi-
photon ionization, for example). Topics covered in standard first-year
quantum mechanics courses have been avoided where possible, which is
the reason for the absence of many first-order Born approximation calcula-
tions which could have been included. I have tried to carry the calculations
to a point where the laser no longer plays a role and standard atomic physics
methods take over. This is not meant to imply that the remaining problem
is simple, but only that it falls outside the scope of this book. I have also
tried to choose what I believe will be the most enduring treatments, but
that is a subjective choice which is bound to be wrong in some cases. Chapter
3, on States of an Atom in a Laser, may well be an example of this situation.

The first chapter deals with standard material, much of which is
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viii Preface

included in most first-year graduate quantum mechanics courses, but is
included here with a point of view that is adaptable to the remainder of
the book. The two-level atom, the subject of the second chapter, has been
treated extensively from several different viewpoints in other places (notably
in the excellent book Optical Resonances and Two-Level Atoms by L. Allen
and J. H. Eberly, Wiley-Interscience, New York, 1975), so it is treated only
to the extent that is necessary for subsequent chapters. Similarly, spon-
taneous radiation, the subject of the fourth chapter, is treated only briefly
in order to obtain results that are necessary for the discussion of other
processes. In dealing with both of these subjects 1 have stopped short of
the extensive theoretical discussions and comparison with experiment
which are available in other sources, since these are not intended to be the
primary emphasis of this book.

The book draws from the work of many people, and a list of references
is given at the end of each chapter. However, the perspective presented is
my own, and I should acknowledge the effects of discussions with my
colleagues at City College, who helped me to straighten things out in my
own mind. Professors Kenneth Rubin and Joel Gersten were the principal
contributors in that way. Two (at that time) graduate students, Drs. J.
Banerji and P. Krstic, also aided greatly with a critical reading of the
manuscript and many useful suggestions. It was put in its final form during
the Summer of 1981 at the University of California at Berkeley. I am in-
debted to Professor Richard Marrus for his hospitality there. My own
research which occasionally appears in this book was supported by a U.S.
Office of Naval Research Contract, which is gratefully acknowledged.
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Basic Ideas

1.1. Introduction

Since the object of this exercise is the treatment of the interaction of
atoms with lasers, which are very intense electromagnetic fields, our starting
point must be the Schrodinger equation describing the time evolution of
coupled matter and electromagnetic fields. We shall be interested in relativis-
tic effects only in a peripheral way, so the matter field will be described by a
conventional Schrédinger wave function. However, we must allow for cre-
ation and destruction of photons, the particles of the electromagnetic field.
This is most conveniently done by resorting to the quantum electrodynamic
description of this field.! In that case the Schrodinger equation reads

i}
h— —H Y =0 1.1,
(z Py > (1.1.1)
where
ej 2
H=H,+ Y + V(ryory,) . (1.12)
Z 2m

Jj=1 J
The first term is the energy operator of the noninteracting electromagnetic
field

H.y =Y hogm, (1.1.3)
k,A

where the sum k, 1 is a sum over a complete set of modes of the electro-
magnetic field. Usually k is the momentum of the mode and A numbers
the two possible polarizations of the transverse field, A(r). hcw, is the energy
of the mode and n,; is the operator whose eigenvalues are the occupation
numbers (or number of photons) in each mode. This operator is given by

n“ = ahau (1.1.4)
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where aj,(a,;) is a creation (destruction) operator of photons in the k, 4
mode. They obey the commutation relations

[ak}nalt’).’] = Op O (1.1.5)

and all other commutators vanish.
The transverse vector potential of the electromagnetic field is given in
terms of these operators as

drhe? \V? . .
A(n) = Z( ) (a:8,€™ " + al,8he” ™ (1.1.6)
i \ o

where #,, is the unit polarization vector of the mode and V is the quantiza-
tion volume of the field. We have specialized to a plane wave complete set
for the eigenmodes since this is a convenient expansion but any other com-
plete set could have been used. The transversality condition is realized by
the following constraints on the polarization vectors:

K§,=0 (1.1.7)

and the remaining quantities in the Hamiltonian are conventional. The j sum
runs over all particles, and the last term in (1.1.2) is the interaction among
the particles other than those mediated by the quantum electromagnetic
field. For our purposes it will usually be taken to be the sum of the two-body
Coulomb interactions among charged pairs. The wave function in (1.1.1)
is therefore a function in the configuration space of the particles and the
Hilbert space of all of the modes of the quantum-electrodynamic field. This
is the usual starting point for the treatment of the interaction of radiation
and matter, which is a much broader problem than the one of interest here.

1.2. Transition to a Classical Description of the Laser

We are interested in the interaction of lasers, a very special kind of
radiation, with matter. The crucial point which distinguishes lasers from
other radiation, for our purposes, is their high intensity and their coherence
properties. More specifically, it is the large number of photons in a laser
mode. For example, a laser with 1-eV photons with a single mode flux of
1 mW/cm? in a typical coherence volume of 1 cm® has about 2 x 10°
photons in the field:
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_flux v 1073 W/cm? 1cm?

N=——=~
ho ¢ 1eV 3 x 10'° ¢m/sec

~ 2 x 105,

This very high quantum number makes it likely that the laser is accurately
describable as a classical electromagnetic field. This will now be demon-
strated.

We first transform to an interaction representation in which the time
evolution due to the field energy, H_,,. is absorbed into the wave function

W = exp(—iH, t/h) ¥, (1.2.1y
then
0
[:h P H,(t)] ¥, =0 (1.2.2)
where
2
Jmax [ P, - %A("j» t):|
H,(t) = + V(ry - r; 2.
(D ,-;1 2m, (Fy ** Fia) (1.2.3)

and the time dependence introduced into the vector potential by this trans-
formation is given by

A(r,t) = exp(iH, 4t/h) A(r) exp(—iH,4t/h)

2mhc? \?
=Z< V)
ki \ Oy

X {agaexplitk-r — 0] + gy exp[—itk - r — o )]},
(1.24)

Now we transform to the phase representation? for the field. Independent
coordinates, ¢,,, with range 0 < ¢,, < 2=, are introduced for each mode
and a state with n,, photons in the k, 1 mode is described in this coordinate
space by

Mea) gimeadia, (1.2.5)

= Qr)'7?
The number operator is then
|

n, = 3 % (1.2.6)
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and the creation and destruction operators are

: 1 8 \'?2 (1 0 )”2 ,
— —~ipra . , t = — ‘¢ki 1.2
G =€ (i a¢u> “=\iz,) < U2

which are readily shown to satisfy the commutation relations (1.1.5). This
transformation is not a particularly useful one in the general case since the
square root of a derivative is difficult to work with, but when the mode
occupation numbers are high, as they are for lasers operating well above
their lasing threshold,® then it can be exploited to great use. For the laser
modes only, we let

Mo = N+ vig (1.2.8)

where N,; is some average value for the laser mode occupation number
during the process of interest and v, is the variation about that number.
We shall be interested in v,; as large as perhaps 10* for some processes
but that is still much smaller than typical values of N,; of interest. For this
reason we make the unitary transformation which relabels the laser mode
states by the index v,; rather than n,;

|y = ety D (1.2.9)

so that the operators are changed to

ay; =

(12 ) e
aj; = + - evrr
) Y o

Then noting that in this representation, (1/i)(¢/d¢,;) is of the order of v,
these may be expanded

. 1 1 0
au:e_'d’“\/Nu(l + < + )

I
o
&
=
8
TN
Z
=
b
+
| =
D
S~—~_
I

(1.2.10)

2N, i 0
TR (1.2.11)
1 1 ¢ .
R 1 + — + > "f’kl‘
et ( INpx | 0s ¢
If only the leading terms are kept then
2nhetN .
A= Z( “) {aexplitk-r — ot — ¢,0) ]
kA WiV

+ gF exp[—ilk'r — wt — @) ]} + A (1.2.12)
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where
1 2mhc? )1/2{ 1 2
oA = — g.explilk r — it — ¢p)) -~ ——
2L ( NV Eka pli( k Dra i 3,
1 @ i
+ & exp[ —ik-r — @t — d’u)]}- (1.2.13)
i Oy,

The first term in (1.2.12) is exactly the form of a classical electromagnetic
vector potential with a mode amplitude

8mhw Ny V2
: Eu=<———w;‘ "‘) . (1214

4] = —|E
kA _wk kA

This relates the amplitude of a classical electromagnetic field to the more
fundamental description in terms of the occupation numbers of the field or
the density of photons in the field. The term JA is the first quantum correc-
tion which is seen to be small for lasers oscillating well above their lasing
thresholds, N, > 1.

With the prescription

c
A, ) = Zz——{Eu expli(k 1 — ayt — ¢ ]
kA “Wy

+ EXexp[—i(k T — g — )]} (1.2.15)

the Schrodinger equation, (1.2.2), describes the particles in the field of an
operator which looks like a classical prescribed electromagnetic field with
the phase parameters, ¢,; which are still operators.

For a single-mode laser the one phase parameter, which occurs as
(w,t + ¢yy), can be absorbed into a translation of ¢ and so will not enter
into any physical results. However, in a multimode laser, only one of the
phase parameters can be eliminated in this way and so we can expect that
there are physical results which will depend on the relative values of these
parameters. They are usually unknown and so ensemble averages over them
are necessary. This is discussed briefly in Section 1.6 of this chapter.

The preceding discussion dealt with the transition to a classical de-
scription of the laser field for the case when the numbers of photons in
each of the laser modes were large. A complementary derivation of this
transition was given by Mollow.* It is based on the coherent states of the
electromagnetic field. These states have been shown® to be the quantum
electrodynamic states which most closely approximate the classical state
of the field. They can be defined as eigenstates of the photon destruction



6 Chap. 1 e Basic Ideas

operator, a,;, for the mode under discussion. These states of the radiation
field for the (k, 2) mode are

V() = 3 e " In) (1.2.16)
n=0

and the requirement that this be a normalized eigenstate of g, results in

a"

— M >/2 k4
¢, =¢ NE (1.2.17)

where

Oz = ({m>)'/? e i (1.2.18)

and (n,,) is the average occupation number of the (k4) mode. In that case

At = e o (D) (1.2.19)

and the expectation value of the vector potential operator for the (k1) mode,

(1.1.6), is

cEy; ,
Wa(s A0 Y (D)5 = — cos(awt — k-1 + ¢;).  (1.220)
k

Here E,, is the electric field amplitude in this mode, (1.2.14). This is pre-
cisely the classical value of the vector potential. However, it can be shown
that the correspondence goes even further. If the initial state (+ = 0) of the
radiation field for this mode is a coherent state then the occupation of that
state can be expressed as a unitary transformation of the vacuum which
starts from the expression of (1.2.17) as

Yia(0) = e~ mea>Zeana |0 (1.221)
where use has been made of
alny =(m+ Dn+ 1. (1.2.22)
Then the unitary operator
D(a,) = explal;o, — a;%8) (1.2.23)
can be rearranged to give
D(aty;) = e¥rtng ™ dwadha g~ lacil?/2 (1.2.24)
and
¥,,(0) = D(ay)]|0) . (1.2.25)

This unitary transformation has the property

D™ Yay,) a,Dloy;) = ag;, + a, (1.2.26)
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and its Hermitian conjugate. These can be combined to transform the
Hamiltonian (1.2.3) in such a way that the only change is the replacement

2mhc? \1?
A(r, )~ A, 1) + (
Vo,

x {oabexplitk -t — o) + aféh exp[—itk r — )]} . (1.227)

Then the use of (1.2.18), (1.2.15), and (1.2.14) shows that this addition to
A is just the classical value of the vector potential for that mode. The results
shows that the transformation (1.2.24) changes the initial state, occupied as
a coherent photon state, into a vacuum state and compensates by adding
a classical electromagnetic potential to the quantum electrodynamic
operator. The operator [the first term on the right-hand side of (1.2.27) ]
will cause fluctuations about the classical field, but if these fluctuations are
small compared to the classical field then the operator may be dropped
and we arrive at a result similar to that obtained in (1.2.15).

1.3. Dipole Approximation, Center-of-Mass Transformation,
Ponderomotive Potential

The particle coordinates of the Hamiltonian (1.2.3) can be transformed
into a center-of-mass coordinate, p, and relative coordinates x;. Such that

L=p+ (1.3.1)

and the vector potential A(r,, t) is then a function of this coordinate through
the factors exp[ + ik -(p + x;)]. The relative coordinate, g,, will usually be
limited to the size of the atom in any matrix elements that occur and this
will make the factor exp(zik-y;) only slightly different from unity since

kg ~kay ~ ap ~ 13771,

An expansion in powers of k - g, is then indicated and usually only the leading
term is kept. This s the dipole approximation.® In cases when such matrix
elements vanish the expansion can be carried further but we shall not be
concerned with that here.

The center-of-mass coordinate can couple to the laser through the
remaining factors e*™# so that the motion of the atom as a whole can be
affected by the laser. We shall return to this in Chapter 5.

In case the forces on the center of mass are small (as is not unusual)
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then the coordinate, p, is a constant and it may be removed by a redefini-
tion of the phases of the modes. Moreover, when p is not exactly a constant
but is instead a slowly varying function of time, its effect can be seen to be
the same as a slow drift in the mode phases as a function of time.

We introduce a new set of coordinates in terms of the nuclear coordi-
nate, R, and the electron coordinates. r;

z
(MNRN+ Y mr,.>/MA
i=1

L=r1—Ry (1.3.2)
MA - MN + Zm

Il

P

where M, is the nuclear mass so that M, is the atomic mass. Then, in these
variables, the Hamiltonian (1.2.3) in the dipole approximation becomes (we
now drop the subscripts on H; and '¥;)

H Pﬁ+lf[P+eA( )T+ : \i [PJ;—?A( )]
_ _ S At — .+~ Alp.t
M, 2u T ¢ My is7=1 ¢

- [P,. + gA(p, r)] + V(1 p) (1.33)

where the reduced mass is

mM

= 1‘ .4
My +m (134

U

The Hamiltonian can be rewritten as

P2z 1z
H=[ y +-——A2(p.t)]+[— pP?
2M,  2uc? 2u i; !

1z z
+— Y PP+ V(x,p):|+li‘—3A(p,t)-ZPl.j|'(l.3.5)

Ni>j=1 i=1

The first two terms describe the kinetic energy of the center-of-mass motion
and a time-dependent potential acting on the center-of-mass motion. If we
write (for a single-mode laser)

‘E
A(p.t) = ¢ (()p) cos(wt + k- p) (1.3.6)
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where E(p) is the amplitude of the electric field of the laser which is explicitly
position dependent, then

c? c?
AXp. ) =— E*(p) + — E2(p) cos2(mt + k- p) (1.3.7)
2w 2w

The effect of the second term on the center-of-mass motion is usually neg-
ligible since the mass of the atom is too large for it to respond significantly
to this rapidly oscillating term. The first term of (1.3.7) will, however, con-
tribute a time-independent potential which acts on the center-of-mass
motion, the center-of-mass ponderomotive potential

Ze?

EX(p). 1.38
dmw? 2 ( )

UgM(p) =
(We have set M,/My = 1 + Zm/M, = 1.) Notice that the mass that enters
here is the electron mass so that (1.3.8) is not negligible in some cases. There
will be other contributions to potentials which act on the center-of-mass
motion via the second-order contribution of the last term of (1.3.5). This
is a subject which we will return to in Chapters 5 and 6.

The second bracket of (1.3.5) is the atomic Hamiltonian in the absence of
the laser and the last is the coupling of the laser to the internal coordinates
of the atom. The effect of this coupling on the center-of-mass motion may
not be negligible (Chapter 5). However, in almost all cases the center-of-
mass motion can be described classically (Chapter S, Sec. 2) so that p
becomes a function of ¢ and moreover it will be a slowly varying function
of time on the time scale of the internal motion of the atom. (A typical period
for internal atomic motion is 10~ ' sec.) A fast atom moving at 107 cm/sec
will travel 10™° cm in that time and so the external environment in which
the atom finds itself will be a very slowly varying function on its own time
scale. The external conditions, E(p), can be treated as constant or adia-
batically varying and the origin may be taken at p = 0 for the purposes
of the next section in which A(p. 1)} p=0 = A(D).

1.4. Gauge Transformations
The Schrédinger equation (as described in Section 1.3) can be written

a
[ihE—Hl(t)]‘Pl =0 (1.4.1)

where our new notation is



