Chengde Mao
Takashi Yokomori (Eds.)

LNCS 4287

DNA Computing

12th International Meeting on DNA Computing, DNA12
Seoul, Korea, June 2006
Revised Selected Papers

@ Springer



Chengde Mao Takashi Yokomori (Eds.)
DNA Computing

12th International Meeting on DNA Computing, DNA12
Seoul, Korea, June 5-9, 2006
Revised Selected Papers

@ Springer



Volume Editors

Chengde Mao

Purdue University

Department of Chemistry

560 Oval Drive, West Lafayette, IN 47907-2084, USA
E-mail: mao@purdue.edu

Takashi Yokomori

Waseda University

Faculty of Education and Integrated Arts and Sciences
Department of Mathematics

1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan
E-mail: yokomori @waseda.jp

Library of Congress Control Number: 2006938335

CR Subject Classification (1998): F.1, F2.2,1.2.9,J.3
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-49024-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-49024-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11925903 06/3142 543210



Preface

This volume is based on papers presented at the 12th International Meeting
on DNA Computing (DNA12), which was held during June 5-9, 2006 at Seoul
National University, Seoul, South Korea. DNA computing is an interdisciplinary
field across computer science, mathematics, molecular biology, chemistry, physics,
and nanotechnology. The central theme is to develop novel computing paradigms
based on DNA. The annual meeting on DNA computing provides a major forum
for scientists to present and discuss their latest results and promotes interactions
between experimentalists and theoreticians.

The DNA12 Program Committee received 72 submissions and the current
volume contains a selection of 34 papers from the preliminary proceedings.
All selected papers were significantly revised by the authors according to the
discussion during the meeting. It is our intention to cover all major areas in DNA
computing, including demonstrations of biomolecular computing, theoretical
models of biomolecular computing, biomolecular algorithms, in vitro and in
vivo computational processes, analysis and theoretical models of laboratory
techniques, biotechnological and other applications of DNA computing, DNA
nanostructures, DNA nanodevices, DNA error evaluation and correction, in
vitro evolution, molecular design, self-assembly systems, nucleic acid chemistry,
and simulation tools. However, some papers on experimental works are not
included because the authors would like to publish their works in more
traditional journals.

We have organized the current volume by classifying 34 papers into
8 categories whose topical section headings (and breakdowns) are: Molecular
and Membrane Computing Models (6), Complexity Analysis (3), Sequence and
Tile Designs and Their Properties (5), DNA Tile Self-Assembly Models (4),
Simulator and Software for DNA Computing (4), DNA Computing Algorithms
and New Applications (4), Novel Experimental Approaches (3), and Experimental
Solutions (5).

The editors would like to thank all participants, referees, the Program
Committee, the Organization Committee, all assistants, and all sponsors for
making this conference and this volume possible.

September 2006 Chengde Mao
Takashi Yokomori
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Computing with Spiking Neural P Systems:
Traces and Small Universal Systems

Mihai Ionescu!, Andrei Paun?,
Gheorghe Paun®*, and Mario J. Pérez-Jiménez*
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Abstract. Recently, the idea of spiking neurons and thus of computing
by spiking was incorporated into membrane computing, and so-called
spiking neural P systems (abbreviated SN P systems) were introduced.
Very shortly, in these systems neurons linked by synapses communicate
by exchanging identical signals (spikes), with the information encoded
in the distance between consecutive spikes. Several ways of using such
devices for computing were considered in a series of papers, with uni-
versality results obtained in the case of computing numbers, both in the
generating and the accepting mode; generating, accepting, or processing
strings or infinite sequences was also proved to be of interest.

In the present paper, after a short survey of central notions and re-
sults related to spiking neural P systems (including the case when SN P
systems are used as string generators), we contribute to this area with
two (types of) results: (i) we produce small universal spiking neural P
systems (84 neurons are sufficient in the basic definition, but this num-
ber is decreased to 49 neurons if a slight generalization of spiking rules
is adopted), and (ii) we investigate the possibility of generating a lan-
guage by following the trace of a designated spike in its way through the
neurons.

1 Introduction

Spiking neural P systems (in short, SN P systems) were introduced in [6], with
the motivation coming from two directions: the attempt of membrane computing

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 1-16, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 M. Ionescu et al.

to pass from cell-like architectures to tissue-like or neural-like architectures (see
[15], [12]), and the intriguing possibility of encoding information in the duration
of events, or in the interval of time elapsed between events, as vividly investigated
in recent research in neural computing (of “third generation”) (8], [9].

This double challenge led to a class of P systems based on the following simple
ideas: let us use only one object, the symbol denoting a spike, and one-membrane
cells (called neurons) which can hold any number of spikes; each neuron fires in
specified conditions (after collecting a specified number of spikes) and then sends
one spike along its axon; this spike passes to all neurons connected by a synapse
to the spiking neuron (hence it is replicated into as many copies as many target
neurons exist); between the moment when a neuron fires and the moment when
it spikes, each neuron needs a time interval, and this time interval is the essential
ingredient of the system functioning (the basic information carrier — with the
mentioning that also the number of spikes accumulated in each moment in the
neurons provides an important information for controlling the functioning of
the system); one of the neurons is considered the output one, and its spikes
provide the output of the computation. The sequence of time moments when
spikes are sent out of the system is called a spike train. The rules for spiking
take into account all spikes present in a neuron not only part of them, but not
all spikes present in a neuron are consumed in this way; after getting fired and
before sending the spike to its synapses, the neuron is idle (biology calls this
the refractory period) and cannot receive spikes. There are also rules used for
“forgetting” some spikes, rules which just remove a specified number of spikes
from a neuron.

In the spirit of spiking neurons, as the result of a computation (not necessarily
a halting one) in [6] one considers the number of steps elapsed between the first
two spikes of the output neuron. Even in this restrictive framework, SN P sys-
tems turned out to be Turing complete, able to compute all Turing computable sets
of natural numbers. This holds both in the generative mode (as sketched above,
a number is computed if it represents the interval between the two consecutive
spikes of the output neuron) and in the accepting mode (a number is introduced
in the system in the form of the interval of time between the first two spikes enter-
ing a designated neuron, and this number is accepted if the computation halts).
If a bound is imposed on the number of spikes present in any neuron during a
computation, then a characterization of semilinear sets of numbers is obtained.

These results were extended in [13] to several other ways of associating a set of
numbers with an SN P system: taking into account the interval between the first
k spikes of each spike train, or all spikes, taking only alternately the intervals,
or all of them, considering halting computations. Then, the spike train itself
(the sequences of symbols 0, 1 describing the activity of the output neuron: we
write 0 if no spike exits the system in a time unit and 1 if a spike is emitted) was
considered as the result of a computation; the infinite case is investigated in [14],
the finite one in [2]. A series of possibilities of handling infinite sequences of bits
are discussed in [14], while morphic representations of regular and of recursively



Computing with SN P Systems: Traces and Small Universal Systems 3

enumerable languages are found in [2]. The results from [2] are briefly recalled
in Section 5 below.

In this paper we directly continue these investigations, contributing in two
natural directions. First, the above mentioned universality results (the possibility
to compute all Turing computable sets of numbers) do not give an estimation on
the number of neurons sufficient for obtaining the universality. Which is the size
of the smallest universal “brain” (of the form of an SN P system)? This is both
a natural and important (from computer science and, also, from neuro-science
point of view) problem, reminding the extensive efforts paid for finding small
universal Turing machines — see, e.g., [16] and the references therein.

Our answer is rather surprising/encouraging: 84 neurons ensure the univer-
sality in the basic setup of SN P systems, as they were defined in [6], while this
number is decreased to 49 if slightly more general spiking rules are used (rules
with the possibility to produce not only one spike, but also two or more spikes
at the same time — such rules are called extended). The proof is based on simu-
lating a small universal register machine from [7]. (The full details for the proof
of these results about small universal SN P systems will be provided elsewhere
- see [11].)

Extended rules are also useful when generating strings: we associate a symbol
b; with a step when the system outputs i spikes and in this way we obtain a
string over an arbitrary alphabet, not only on the binary one, as in the case
of standard rules. Especially flexible is the case when we associate the empty
string with a step when no spike is sent out of the system we associate (that is,
by is interpreted as A). Results from [3], concerning the power of extended SN P
systems as language generators, are also recalled in Section 5.

Then, another natural issue is to bring to the SN P systems area a notion
introduced for symport/antiport P systems in [5]: mark a spike and follow its
path through the system, recording the labels of the visited neurons until either
the marking disappears or the computation halts. Because of the very restrictive
way of generating strings in this way, there are simple languages which cannot
be computed, but, on the other hand, there are rather complex languages which
can be obtained in this framework.

Due to space restrictions, we do not give full formal details in definitions and
proofs (we refer to the above mentioned papers for that); such details are or will
be available in separate papers to be circulated /announced through [19].

2 Formal Language Theory Prerequisites

We assume the reader to be familiar with basic language and automata theory,
e.g., from [17] and [18], so that we introduce here only some notations and notions
used later in the paper.

For an alphabet V, V* denotes the set of all finite strings of symbols from
V'; the empty string is denoted by A, and the set of all nonempty strings over V
is denoted by V. When V = {a} is a singleton, then we write simply a* and
at instead of {a}*,{a}T. If 2 = a1az...an, a; € V, 1 < i < n, then the mirror
image of x is mi(x) = ay, ...aza;.
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A morphism h : V;* — V;* such that h(a) € {a,\} for each a € Vi is called
a projection, and a morphism h : Vi* — V5* such that h(a) € Vo U {A} for each
a € V1 is called a weak coding.

If Li,Ly C V* are two languages, the left and right quotients of L; with
respect to Lo are defined by Lo\L; = {w € V* | zw € L, for some z € La},
and respectively Li/Ly = {w € V* | wz € Ly for some z € Ly}. When the
language Lo is a singleton, these operations are called left and right derivatives,
and denoted by 9% (L) = {z}\L and 0%(L) = L/{z}, respectively.

A Chomsky grammar is given in the form G = (N, T, S, P), where N is the
nonterminal alphabet, 7" is the terminal alphabet, S € N is the axiom, and
P is the finite set of rules. For regular grammars, the rules are of the form
A— aB,A — a, for some A,Be€ N,aeT.

We denote by FIN, REG,CF,CS, RE the families of finite, regular, context-
free, context-sensitive, and recursively enumerable languages; by M AT we de-
note the family of languages generated by matrix grammars without appearance
checking. The family of Turing computable sets of numbers is denoted by NRE
(these sets are length sets of RE languages, hence the notation).

Let V = {b1,ba,...,by}, for some m > 1. For a string x € V*, let us denote
by val,,(x) the value in base m + 1 of = (we use base m + 1 in order to consider
the symbols by, ..., b, as digits 1,2,...,m, thus avoiding the digit 0 in the left
hand of the string). We extend this notation in the natural way to sets of strings.

All universality results of the paper are based on the notion of a register
machine. Such a device — in the non-deterministic version — is a construct M =
(m, H,lo,ln,I), where m is the number of registers, H is the set of instruction
labels, [y is the start label (labeling an ADD instruction), I, is the halt label
(assigned to instruction HALT), and I is the set of instructions; each label from H
labels only one instruction from I, thus precisely identifying it. The instructions
are of the following forms:

— l; : (ADD(7), 1, k) (add 1 to register r and then go to one of the instructions
with labels /;, [;, non-deterministically chosen),

— 1; : (SUB(7), 1, 1) (if register r is non-empty, then subtract 1 from it and go
to the instruction with label /;, otherwise go to the instruction with label
lk.),

— lp : HALT (the halt instruction).

A register machine M generates a set N (M) of numbers in the following way:
we start with all registers empty (i.e., storing the number zero), we apply the
instruction with label /[y and we continue to apply instructions as indicated by
the labels (and made possible by the contents of registers); if we reach the halt
instruction, then the number n present in register 1 at that time is said to be
generated by M. (Without loss of generality we may assume that in the halting
configuration all other registers are empty; also, we may assume that register 1
is never subject of SUB instructions, but only of ADD instructions.) It is known
(see, e.g., [10]) that register machines generate all sets of numbers which are
Turing computable.
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A register machine can also be used as a number accepting device: we in-
troduce a number n in some register ry, we start working with the instruction
with label [y, and if the machine eventually halts, then n is accepted (we may
also assume that all registers are empty in the halting configuration). Again,
accepting register machines characterize NRFE.

Furthermore, register machines can compute all Turing computable functions:
we introduce the numbers nq,...,n; in some specified registers r1,...,rr, we
start with the instruction with label ly, and when we stop (with the instruction
with label [;) the value of the function is placed in another specified register,
ry, with all registers different from r; being empty. Without loss of generality we
may assume that ry,..., 7, are the first k registers of M, and then the result of
the computation is denoted by M (nq,...,ng).

In both the accepting and the computing case, the register machines can be
deterministic, i.e., with the ADD instructions of the form [; : (ADD(r),;) (add 1
to register r and then go to the instruction with label [;).

In the following sections, when comparing the power of two language gener-
ating/accepting devices the empty string A is ignored.

3 Spiking Neural P Systems

We give here the basic definition we work with, introducing SN P systems in the
form considered in the small universal SN P systems, hence computing functions
(which, actually, covers both the generative and accepting cases).

A computing spiking neural membrane system (abbreviated SN P system), of
degree m > 1, is a construct of the form

I =(0,01,...,0m,syn,in,out),
where:

1. O = {a} is the singleton alphabet (a is called spike);
2. 01,...,0, are neurons, of the form

g; = (niaRi)al S 1 S m,

where:
a) n; > 0 is the initial number of spikes contained in o;;
b) R; is a finite set of rules of the following two forms:
(1) E/a® — a;d, where E is a regular expression! over a, ¢ > 1, and
d > 0;
(2) a® — A, for s > 1, with the restriction that for each rule E'/a® — a;d
of type (1) from R;, we have a® ¢ L(E);
3. syn C{1,2,...,m} x{1,2,...,m} with (¢,%) ¢ syn for 1 <1i < m (synapses
between neurons);
4. in,out € {1,2,...,m} indicate the input and the output neurons of II.

! The regular language defined by E is denoted by L(E).
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The rules of type (1) are firing (we also say spiking) rules, and they are applied
as follows. If the neuron o; contains k spikes, and a* € L(E),k > c, then the
rule E/a® — a;d € R; can be applied. This means consuming (removing) ¢
spikes (thus only k — ¢ remain in o0;), the neuron is fired, and it produces a spike
after d time units (as usual in membrane computing, a global clock is assumed,
marking the time for the whole system, hence the functioning of the system is
synchronized). If d = 0, then the spike is emitted immediately, if d = 1, then the
spike is emitted in the next step, etc. If the rule is used in step ¢t and d > 1, then
insteps t,t +1,t+2,...,t+d — 1 the neuron is closed (this corresponds to the
refractory period from neurobiology), so that it cannot receive new spikes (if a
neuron has a synapse to a closed neuron and tries to send a spike along it, then
that particular spike is lost). In the step t + d, the neuron spikes and becomes
again open, so that it can receive spikes (which can be used starting with the
step t +d +1).

The rules of type (2) are forgetting rules; they are applied as follows: if the
neuron o; contains exactly s spikes, then the rule a® — X from R; can be used,
meaning that all s spikes are removed from ;.

If a rule E/a® — a;d of type (1) has E = a°, then we will write it in the
following simplified form: a® — a;d. If all spiking rules are of this form, then
the system is said to be finite (it can handle only a bounded number of spikes
in each of its neurons).

In each time unit, if a neuron o; can use one of its rules, then a rule from R;
must be used. Since two firing rules, Ey/a“* — a;d; and F>/a®® — a;ds, can
have L(E,) N L(Ey) # 0, it is possible that two or more rules can be applied in a
neuron, and in that case, only one of them is chosen non-deterministically. Note
however that, by definition, if a firing rule is applicable, then no forgetting rule
is applicable, and vice versa.

Thus, the rules are used in the sequential manner in each neuron, but neurons
function in parallel with each other (the system is synchronized).

The initial configuration of the system is described by the numbers ny,no, ...,
N, of spikes present in each neuron, with all neurons being open. During the
computation, a configuration is described by both the number of spikes present
in each neuron and by the state of the neuron, more precisely, by the number of
steps to count down until it becomes open (this number is zero if the neuron is
already open).

A computation in a system as above starts in the initial configuration. In
order to compute a function f : N¥ — N, we introduce k natural numbers
Niy..., ny in the system by “reading” from the environment a binary sequence
z = 010" 110"~ 11, ..10" 110/, for some b, f > 0; this means that the input
neuron of IT receives a spike in each step corresponding to a digit 1 from the
string z. Note that we input exactly k& + 1 spikes. The result of the computation
is also encoded in the distance between two spikes: we impose to the system to
output exactly two spikes and halt (sometimes after the second spike), hence
producing a train spike of the form 0710710/, for some ¥/, f" > 0 and with

r=f(ny,...,ng).
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If we use an SN P system in the generative mode, then no input neuron is
considered, hence no input is taken from the environment; we start from the
initial configuration and the distance between the first two spikes of the output
neuron (or other numbers, see the discussion in the Introduction) is the result of
the computation. Dually, we can ignore the output neuron, we input a number
in the system as the distance between two spikes entering the input neuron, and
if the computation halts, then the number is accepted.

We do not give here examples, because in the next section we show the four
basic modules of our small universal SN P system.

4 Two Small Universal SN P Systems

In both the generating and the accepting case, SN P systems are universal,
they compute the Turing computable sets of numbers. The proofs from [6], [13]
are based on simulating register machines, which are known to be equivalent
to Turing machines when computing (generating or accepting) sets of numbers,
[10]. In [7], the register machines are used for computing functions, with the
universality defined as follows. Let (g, ¢1, . ..) be a fixed admissible enumeration
of the set of unary partial recursive functions. A register machine M, is said to
be universal if there is a recursive function g such that for all natural numbers
x,y we have p,(y) = M,(g(z),y). In [7], the input is introduced in registers 1
and 2, and the result is obtained in register 0 of the machine.

l() : (SUB(l).l]‘l2), ll : (ADD(7) )

lo : (ADD(6), I3), l3 : (SUB(5), l2, 1),

la : (SUB(6),l5,13), l5 : (ADD(5), ls),

ls : (SUB(T), l7,1s), l7 : (ADD(1), L),

Is : (SUB(6),ls, o), lg : (ADD(6), L10),

Lo : (SUB(4),lo. 111), l11 : (SUB(5), Li2, 13),
Lo : (SUB(,S) l14, ll") I3 : (SUB(Q),llz(,llg)v
lia: (SUB(S) [15,l17) l15 : (SUB(3) 11871‘20)7
lig : (ADD(4), [11), li7 : (ADD(2), l21),
Lis : (SUB(4), lo, In), lg = (SUB(0), lo, L1s),
l20 = (ADD(0), o), l21 : (ADD(3), L1s),

I, : HALT.

Fig. 1. The universal register machine from [7]

The constructions from [6] do not provide a bound on the number of neurons,
but such a bound can be found if we start from a specific universal register
machine. We will use here the one with 8 registers and 23 instructions from (7]
for the reader convenience, this machine is recalled in Figure 1, in the notation
and the setup introduced in the previous section.

Theorem 1. There is a universal SN P system with 84 neurons.



