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Preface

Recent developments in computer technology have been so rapid that we can often
notice a difference between the physical and functional states of real computer systems,
on the one hand, and the theory of their design and implementation, on the other.
This rapid development is due to the role assigned to computers in the advancement
of science and technology. The recent explosion of information can no longer be mas-
tered by man using traditional methods. Nowadays it has become impossible to make
correct decisions in any field of social activity without using computer systems. Also,
it must be said that the ever increasing degree of complexity produced by progress
in science and technology is due, to a large degree, to informational structures. Obvi-
ously, one must question the role of computing systems for the future processing of
information. Will these techniques be sufficient to handle information or will some
other means be devised?

The development of computer systems has produced two results in an attempt
to tackle the problems raised by the present development of science and technology.
First, the number of computing systems is ever increasing and these have become the
basic instruments for solving problems that require mere calculation or mechanical
devices for information processing. Second, computing systems have become more
and more specialized in order to solve specific types of problem.

The above mentioned facts are closely connected with the present attempts to
expand computer structures and to get closer and closer to a kind of simulation
of human thought at the highest level of formal logic. In this respect, two basic
tendencies are apparent.

(i) The replacement of simple linear structures by non-linear memory struc-
tures and generalized addresses, which leads to modified and more complex addres-
sing mechanisms (see the Multics system). In addition, the computer system is
entirely virtualized at the level of each of its components.

(ii) A higher degree of virtualization in computer structures, which leads to
architectural structures that simulate human formal logic, and the shift to physical
real structures by means of wired devices that simplify programming work and make
it more profitable.

These two main tendencies in computer science are based on the discovery of
several new physical states that can perform the functions of reception, conservation
and processing of information. Also, new basic theories for implementing technologies
of physical structures and their corresponding software have greatly contributed to
this orientation of computers. The theoretical foundation of computer systems has
become the main tendency of late; this is due to the lack of balance between practice
in this field and the theoretical foundation. Physical equipment is required by prac-
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tical necessities. Philosophy and theoretical foundations are necessary not so much
for the purpose of constructing a physical computer but mainly for establishing prin-
ciples that enhance the development and profitability of computers in all respects.
However, since computers must first exist and can only afterwards become profitable,
the above mentioned lack of balance is not without explanation. At present, quanti-
tative accumulations have become sufficiently large to enable a qualitative leap to be
carried out, induced by the foundation of theoretical principles.

Since mathematics has greatly contributed to computers, it is almost natural
that a theory of computers should be defined within the scope of mathematics. Ma-
thematics is still a powerful means of reference for computers. However, mathematics
was not developed to accomplish the goals of computers, it was devised to formalize
human thought. Mathematics serves this purpose on the logical-abstract level whilst
computers have been devised to serve this purpose on the logical-concrete level. Hence,
computers can formalize thought and also provide a means for the mechanical con-
struction of thought. This is why the objects of computer science are somewhat differ-
ent from the objects of mathematics, in the same way as their methods and all the
consequences thereby induced differ. However, the above mentioned similarities have
naturally led to a mutual influence between the two fields.

Mathematicians who have devoted their studies to computer science have often
reached highly abstract theoretical results where the physical computer vanishes be-
hind mathematical abstractions. The mathematical theories produced by these studies
are only mathematical theories, although their development has been urged and some-
times induced by real computers. In this respect, it is sufficient to think of the automata
theory and algorithms and recursive function theory. These theories can account for
some phenomena of real computers but they cannot replace the theory of real computers.
Hence, the correlation between these two fields of activity is not only natural but also
necessary. This is useful not only for the increase of knowledge for its own sake but
also for the efficient development of both mathematics and computers and human
thought. In this respect, we shall specify only the consequences of this correlation as
an efficient means of computer development. With computers, efficiency means ob-
servance of their purpose and higher profitability. More precisely, computers must
take good account of the methods of logical construction of thought from mathematics
and other sciences, on both the formal and the constructive levels of physical modelling.
In addition, the work of computers is production, in the true sense of the word, and
production must be profitable in all respects, from initiation and design to implemen-
tation and problem solution. Hence, mathematics and other sciences must be able to
explain computer facts and especially computer construction and planning.

Hence, it is necessary to work out a theory for real computers that provides a
theoretical foundation for both hardware and software engineering. The engineering
used in the production of software systems is a natural requirement considering the
fact that computers represent a means of production. We can hardly claim that the
engineering for software systems is complete but we are certain that this is one of the
fields of computer investigation that has been much invested in, on good account, at
this time.

Therefore, the theory of real computers must be related to two aspects of com-
puter activity: (1) the real aspect of the physical hardware whereby operations are
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performed within a given logic in the form of programs, and (2) the formal aspect
of this logic. The given logic can itself be considered as a virtual computer. The actual
fulfilment of the functions of a virtual computer on a real computer, or the implemen-
tation of a virtual computer on a real computer, represents one of the key-problems
of such a theory.

Technology is used for designing and implementing a virtual computer on a real
computer and for the planning and management of jobs on real computers. Although
these problems are clear by now, a theoretical foundation of the principles and metho-
dology for such technological activity is still lacking.

The present volume marks a beginning in this respect. The structure of the book
follows the aims given below.

(i) To produce a technique capable of further development. So far, the expe-
rience of researchers has proved that such a technique can be obtained by information
organization, which can be better done by means of the methods of modern algebra
where heterogeneous structures are extremely important, and it appears that this
technique is very suitable for this purpose.

(ii) To apply the formal technique of information organization to describe the
structure of real computers and the construction of a formal model for the architecture
of a computer system that includes both existing structures and future developments.

(iii) To organize the information flow in a computer system by means of the
proposed technique.

Considering these stages the material has been divided into eight chapters.

Chapter I presents the mathematical techniques in a graded form, starting from
the simplest algebraic structures that are used by computers up to the most compli-
cated ones. The purpose of this chapter is to provide a simple introduction for those
who are not well acquainted with abstract algebra.

Chapter II deals with heterogeneous algebraic structures, developed as a mathe-
matical technique for modelling computer systems. The purpose of this chapter is to
provide a framework for theories faithful to a given reality and to provide the hetero-
geneous algebraic structure used as a mathematical basis for the theories of hardware
and software.

Chapter III presents a formal model for actual computing systems by means of
the technique proposed in Chapter II. In addition, these techniques are used for the
formulation of computing structure models that can assist the future development of
architectural considerations. In this respect, we have used the system of level hierar-
chies with computing systems. This principle makes clear the relationship both between
real and virtual computer, and the implementation of virtual computers on real com-
puters. A number of examples illustrate both the functions of various components of
the computing system and their implementation on hierarchy levels. The flow of infor-
mation in a real computing system is extremely important for these principles and
relations. Hence, computers are conceived on two levels, virtual and real, and then
the functional model of the real computer is analysed.

Chapter IV deals with the structure of internal information I(X;, Q;) associated
with the virtual computer. This structure is thought to be similar to the structure asso-
ciated with the real computer, which is denoted by SRC.
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Chapter V presents the structure of the external information E(Xg, Qg). Thus,
the process of problem solving by a computer system is viewed as a sequence of infor-
mation transformations in a job diagram of the form

E(Xg, Qp) 2 I(X;, Q) 2 SCR O

Chapter VI deals with the operating system as a function for the distributions
of jobs in a real computer system. The discussion of the structure and functions of
the operating system proceeds from the basic concept of job, which is defined by means
of the job diagram presented in Chapter V. Several types of operating system and the
methods used for their design and implementation are also discussed.

Chapter VII presents the Multics system as one of the first computing sys-
tems whose structure can be formalized on a theoretical basis.

Chapter VIII is devoted to the reliability of the computer system. For the study
of reliability we must always bear in mind the human limits in system design and imple-
mentation, whence the need for protection strategies.

This book is intended for a wide variety of readers: research workers in computer
science, professors and students in the computer science field, and also mathemati-
cians, who can contribute so much to this science by their research work.

The author believes that these ideas are sufficient to study the technology of
software systems. From this standpoint this book makes a modest beginning, although
further developments will, of course, be forthcoming.

I wish to express my profound gratitude to Professors Giinter HOLTZ, F. L.
BAUER, Charles RATTRAY, and P. LANDIN for their valuable ideas, which have
substantially contributed to the present volume.
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Chapter I

Abstract structures in computing systems

In this chapter we shall briefly present some of the abstract mathematical structures
which are frequently used in the theory of computing systems and which will be
also used in the following chapters. To justify the use of such mathematical ele-
ments in computing systems, we start with the simple observation that, in practice,
computers usually work with signs. These signs have two elements: on the one
hand, a physical element which depends on their nature and, on the other hand,
an element of information arising from the fact that the signs are symbols which
differ from each other.

From the physical point of view, the signs represent physical states of some
material quantities such as electric potentials, electric currents, magnetic pro-
perties, and so on. By subtracting the physical nature of these signs we are left
only with simple symbols which differ from each other and which can be used
to build other symbols, and so on. However, these signs, as well as the symbols
built on them, can be interpreted as primitive operations of a computer; i.e. pri-
mitive data to be processed by the computer. Primitive operations or primitive
data functions of arbitrary nature are symptomatic of the interpretations given to
various types of such elements. However, to be able to speak of such different
interpretations, the corresponding signs and constructions performed on them
should be structuralized. Structuralization will provide syntactic distinctions which
will turn into differences of interpretation. The corresponding structuralization
can obviously be performed within the framework of a theory of abstract structures
like the usual ones in algebra. This means that algebra will play the role of a
structuralization apparatus for signs and constructions performed with these signs,
each representing the abstract parts of some physical phenomena, like those men-
tioned above.

In consideration of what has been said above, we shall briefly discuss in the
first two chapters some of the concepts of the usual abstract structures familiar
in the theory of computers, like the concepts of semigroup, universal algebra, as
well as some concepts which have only recently entered the domain of computers,
like heterogeneous universal algebra with state words. Transformations between
the structures thus defined will be discussed by means of the concepts of functions,
isomorphism, homomorphism, and so on. Since the fundamental elements of the
constructions will be sets of signs, we proceed by specifying the language we use,
namely that of set theory.
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§ 1.1. Concept and Notation in Set Theory

We shall not define the concept of set, since it is intuitively clear. We state only
that every time we speak of a set, we have in view one of the following two ways

of specifying it.
1. By enumerating the elements of the set.
2. By means of some properties satisfied by all the elements of the set.

The sets will be denoted by Latin capitals, and the first way of specifying a
set is

A = {elem 1, elem 2,...}

where elem 1, elem 2, ... means the sequence of the elements of the set. The second
way to specify a set is

A= {a| P@)

which means that the set 4 consists of all the elements a which satisfy the property P.

To denote that an element belongs to a set, we use the symbol €, and the
expression ““‘a is an element of the set 4’ will be written as ae A.

A set is void and is denoted by the sign O if it contains no elements. To avoid
confusion between an element and a set containing a single element, the latter
will be denoted within brackets: { }. Thus, {x} and x are logically distinct. The
first is a set and the second is an element of this set.

The following operations are defined for sets.

1. Union: if A and B are two given sets, then their union is the set A U B
={a ae AoracB}.

2. Intersection: the set ANB = {a|ae Aand ae B} is called the inter-
section of the set 4 with the set B.

3. Difference: the set ANB = {a|aec A and a¢ B} is called the difference
between the sets A and B.

The sign ¢ used above is the negation of the sign €, ie., a¢ B expresses
the property “a is not an element of the set B”.

Let A and B be given sets. If every element of 4 belongs to B, we say that A
is included in B or that 4 is a sub-set of B, or that B includes 4, and we denote
this by 4 = B or B o A. By means of the implication sign = and of the double
implication <>, we have

Ac B<(aeA=aeB).

The sign = is used to denote that the right-hand side follows from the left-hand
side, and the sign <> is used to denote that the left-hand side follows from the
right-hand side, and conversely that the right-hand side follows from the left-
hand side. Thus, we have 4 =« B< B o A. )
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The previously defined operations with sets satisfy the following properties.
1. Commutativity: AUB=BUA and ANB = BNA.

2. Associativity: AU(BUC)=(4UB)UC and
AnNBNC)=(ANB)NnC.
3. Distributivity: AN(BUC)=(ANB)U(ANC) and
AUu(BNC)=(4AUB)N(4UCQ).
4. Morgan formulas: X \(4 U B) = (X\A4) N (X\B),
X\(4 N B) = (X\A4) U(X\B).

If M is a set, then we denote the set of the sub-sets of M by PM. (PM is
sometimes also denoted by 2™). By means of the notation already defined we
have PM = {4| A = M} and it can be seen immediately that PM is closed with
respect to the operations U, N and \.

§ 1.2. Concept of Application

For two given sets, 4 and B, the set A X B = {(a,b) a€ A,be B} is called the
cartesian product of the sets 4 and B.

If R ¢ A X B, then the triplet f = (A4, B, R) is a binary relation or a corres-
pondence of A4 in B.

If (a,b)e R and f= (A4, B, R) is a binary relation, then we say that a is re-
lated to b by the relation R and this is often denoted by aRb.

If the sets A and B coincide, that is, if R = A X A, then the relation R can
have the following properties.

1. Reflexivity: the relation R = A X A4 is called reflexive if (a,a)e R for
any a€ A, or if aRa for any ae A.

2. Symmetry: the relation R = 4 X A is called symmetric if from (a, b)) e R
it follows that (b,a)e R, or aRb = bRa.

3. Transitivity: the relation R = 4 X A is said to be transitive if from (a, b) € R
and (b, c)e R it follows that (a,c)€ R, or aRb and bRc = aRec.

An equivalence relation in a set A signifies a relation R =« 4 X A with the

properties of reflexivity, symmetry and transitivity. An equivalence relation is usu-
ally denoted by the symbol ~.

Let therefore ~ be a given equivalence relation in the set 4. Two elements
a, b e A are said to be equivalent if a ~ b. For each element a € 4, we denote by
C(a) the sub-set of 4 which consists of all the elements equivalent to a; i.e. C(a)
= {be A|a ~ b}. Since the relation is reflexive, it follows that a € C(a).

ProposITION 1.1. For any two elements a,be A with the property a¢ C(b)
and b ¢ C(a), the equality C(a) N C(b) =D holds.
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Proof. Suppose C(a) N C(b) # @. Then there exists an element ce 4 such
that ¢ e C(a) N C(b). Therefore, a ~ ¢ and ¢ ~ b. From the transitivity of the
equivalence relation it follows that a ~ b; ie. C(a) = C(b).

From Proposition 1.1 it follows that the equivalence relation divides the set A4
into disjoint sub-sets which will be denoted by {C(a)'ae A}. The elements of
the set are called equivalence classes. C(a) is the equivalence class of the element
ae€ A with respect to the equivalence relation.

Let us define now the notion of partition of a set 4: by partition of a set 4
we mean a family 2 of disjoint sub-sets of 4 such that the union of the elements
of # is the set A itself.

From the definition of the partition of a set it follows that the family Q
of equivalence classes defined by an equivalence relation ~ in the set 4 is a par-
tition of the set A. The family Q is called the quotient set of 4 and is denoted
by Q =A/~.

A relation f= (4, B, R) is called a function (or application) if the following
two conditions hold.

(i) For every a€ A there exists a b € B such that (a, b) € R.

(ii) If (a,b)e R and (a,b’)€ R, then b =b".

When the relation f = (4, B, R) is a function, we use the notation f: 4 — B,
and for the pair (a, b) € R we have f(a) = b. To denote a point-like correspondence

of the two sets in a function, we sometimes use the notation a»—f>b. The set A4 is
called the domain of the function f, and B is called the co-domain of f. For each
sub-set X = A4, the sub-set ¥ = B of all the elements f(x) e B for x€ X is called
the image of X in B of the function f and is denoted by f(X). In other words,

fX) = {f()e Y| xeX).

The image of the set 4 which represents the domain of f is denoted by Im(f)and
called the image of f.

It can easily be shown that the following relations hold for the operations U
and N and a function f:

f(4 U B) = f(4) Uf(B)
f(4n B) = f(4) nf(B)

If f(4) = B, then we say that the function f: 4 —» B is a function from A4 into B.
This means that for each b € B there is an a € A such that f(a) = b.

If f(4) consists of only one element b € B, then we say that f: 4 » B is a
constant function from A4 to B. If 4 is a non-empty set, then for each b € B there
exists only one constant function f,: 4 — B such that for each X < 4, f,(X) = b.

For each sub-set Y of B, the sub-set X of 4, which consists of all the elements of
A, x € A, such that f(x) € Y, is called the inverse image of Y in the function f: A—B
and is denoted by f~(Y). In other words, f(Y) = {x € 4 | f(x) € Y}. If Y has only
one element, ¥ = {y}, then f~Y(Y) is called the inverse image of the element y in
the function f and is denoted f~Y(y). The following proposition then holds.
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PROPOSITION 1.2. An element y € B belongs to the image f(A) of the function f
if and only if f7(y) is non-empty.

For two sub-sets of the co-domain B of the function f, X and Y, the follow-
ing relations are satisfied for the operations U, N and \ and the function f: 4 — B:

XU Y) = X)UufHY)
X NY)=fHX)nfA(Y)
FHANY) = fHX)NSTHY)

From these equalities it can be seen that the inverse image behaves better
with respect to the operations performed on the sub-sets of the co-domain than
does the image with respect to the operations performed on the sub-sets of the
domain. Thus, if X and Y are two disjoint sub-sets of B, then their inverse images
in f, f71(X) and f~X(Y), are disjoint sub-sets of the domain 4 of the function. In
particular, the inverse image of distinct elements in B gives distinct elements in A.

A function f: A — B is called injective if and only if the inverse image f1(b)
of every element b € B is empty or has only one element. Thus, it follows that f is
injective if and only if the image of distinct elements in A are distinct elements
in B: symbolically, this can be written as: f(a) = f(b) = a = b.

An example of an injective function is inclusion. If 4 < B, then i: 4 —» B
defined by /(@) = a € B for ae A4 is called the inclusion function of 4 into B. This
is sometimes denoted by i: 4 = B.

A function f:4 — B is called surjective if for every b € B, f~1(b) is non-empty;
i.e. for every b e B there exists an ae A such that f(a) = b.

A function f: A —» B is called bijective if it is surjective and injective. Two
properties follow by this definition.

(i) Since f is injective, for every b e B, f71(b) has only one element.

(ii) Since f'is surjective, for every b € B, f71(b) has at least one element.

(i) and (ii) show that f7Y(b) is an element of A4; i.e. b — f~1(b). In other
words, f™1 = (B, A, R™!) where R™* = {(b, a) | (a, b) € R} is also a function, called
the inverse function of function f.

The function f~! is bijective. This follows immediately from the definition
of the function fand from the construction of the inverse function 1 for the given
function f. )

An example of an inverse function can be obtained from the inclusion func-
tion i: A < B. This is called the identical function of the set 4, and for every
ae€ A we have i*(a) = i(a). For this reason, the function is denoted by 1 ,.

Let f: 4 - B and g: B —» C be two given functions. The operation of com-
position of the functions f and g is defined by the following conventions: for every
a € A we denote by /i(a) the element g(f(a)) of the set C. This means that h: 4 — C

defined by /h(a) = g(f(a)) is a new function called the composite function of f
and g. If & is denoted by gof then we have h=gof: 4 - C.



