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INTRODUCTION

This tract contains a somewhat heterogeneous collection of
results on partial differential equations. The unifying element is .
the use of certain elementary identities for plane and spherical
integrals of an arbitrary function. It is the aim of the author
to show how a variety of results on fairly general differential
equations follows from those identities.

The use of ordinary euclidean planes and spheres in connection
with general differential equations represents a departure from
the idea that it is best to work with geometric entities like charac-
teristic conoids, which are associated in an invariant manner
with the differential equation. It i$ probably true that the finer
structure of the solutions is only brought out by using an invariant
approach, adjusted to the individual equation. On the other hand
experience shows that many results have been obtained more
easily by employing cruder unspecific tools, such as power series,
Fourier integrals, finite difference approximations, or L*-norms.
The characteristic properties of the individual equation then
enter only through inegualities instead of equations, and the
considerable difficulties inherent in the use of singular integrals
over characteristic conoids are avoided. In the same way it will
be seen here that integrals over ordinary spheres and planes can
be used to advantage even for equations that are not related to
the ordinary euclidean metric. In such cases the use of these
euclidean objects will introduce certain artificial (non-invariant)
features. This is compensated for by the simplicity and sym-

.metries of ordinary planes and spheres compared with the cor-
responding objects (if any) in whatever geometry might be
associated maturally with the differential equation.

Most of the results given here can be found scattered in the
literature, though possibly with different degrees of generality.
A conscientious effort has been made to give appropriate credit
to other authors and to provide references to related material.

(1



2 PLANE WAVES AND SPHERICAL MEANS

No attempt has been made to give a historical survey and to
decide more intricate questions of priority. This would represent
a formidable task in the field of partial differential equations,
where the actual results of varions workers often do not differ
~ as much (and perhaps are not of as much interest) as their em-
phasis on some specific unifying point of view. The results given
here have been selected so as to demonstrate best the usefulness
of plane waves and spherical means, As far as possible the
treatment has been made elementary and self-contained. It is
clear that this imposes severe restrictions on the choice of topics
and precludes an exhaustive treatment of any one subject.

The basic identities applied in this monograph are contained
in Chapters I and IV. Chapter I deals with the decomposition of
arbitrary functions info functions of the type of plane waves, i.e.
into functions that have parallel planes as level surfaces. Fourier
analysis provides one such decomposition, namely into plane
waves of exponential type. For many applications the exponential
character is not essential, and more elementary ways of decom-
posing a function into plane waves can be used. One such method
of decomposition is given here. It consists of expressing a function
by spherical means of integrals of the function over hyper-planes,
and is due to J. Radon [1].1 The resulting formulae are closely
related to those giving the solution of the initial value problem
of the wave equation. 2 Their connection with more general
‘hyperbolic equations with constant coefficients was indicated by
G. Herglotz (8], p. 18. This type of decompositiop of a function
into plane waves could be called the Radon transform in eontrast
to the Fourier transform.

Chapter II brings as the first application of the Radon transfor-
mation the solution of the initial value problem for homogeneous
hyperbclic equations with comstant coefficients. (“Homogeneous
here refers to the assumption that all derivatives occurring in
the equation are of the same order.?) The formulae we armrive

1 Numbers in brackets refer to the bibliography at the end of the tract _

2. See Mader [1].

? For a complete discussion (including inhomogoneous equations) by means
of symbolic' calculus the reader is referred to Leray [1], [2].
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at go back to Herglotz 4 (though with some restrictions of generali- -
ty) and were extended by Bureau, Girding, Leray and Petrovskii.
They can be obtained in principle by starting from Cauchy’s
solution 8 by Fourier integrals and by “‘evaluating” the kernel
arising from interchange of integrations. This method of approach
is bound to run into convergence difficulties, especially in the
case, where the order of the equation is less than the number of
dimensions. In the latter case there just does not exist an “in-
tegral representation’ of the solution in terms of the data in the
ordinary sense, since the solution does not depend comtinuously
on the data, if the maximum norm is adopted. All one has a right
to expect is that the solution of the initial value problem for a
hyperbolic equation depends continuously on the initial data and
on a finite number of their derivatives. ¢ If an integral represen-
tation is to be used, it has to be interpreted in some generalized
sense, say as ‘‘finite’’ or “logarithmic” part of an improper in-
tegral, as in Hadamard’s theory of second order equations and
in the work of Bureau, 7 or following M. Riesz [1] by analytic
continuation of proper integrals, or as a distribution in the sense
of L. Schwartz [2]. All these generalized integral representations
can be made “concrete” in the form of derivatives of ordinary
integrals, though the transition may require rather unwieldy
computations with :singular integrals. In contrast to that the
method employed here (for homogeneous equations) avoids all
convergence difficulties by working with the simpler Radon de-
composition into plane waves instead of the Fourier integrals.
The solution is then obtained immediately in the form of an
iterated Laplacean applied to a perfectly regular integral operator
acting on the initial data. It is only when one attempts to simplify
the expression by carrying out some of the differentiations explic-
itly that the classical difficulties re-appear. 7 ‘

¢ See Herglotz [1], [2]. Herglotz also gave an exposition of the subject in his
course on ‘“Mechanik der Kontinua,’’ Gttingen, 1931 (see {3]).

* See Cauchy [1], Courant-Hilbert {1], vol. II, ch. III, Bureau [9].

* See Hadamard [1], Garding [1].

7 See Bureau (3], {4], (8]

7¢For a related procedure for general hyperbohc systems with constant
coefficients see R. Courant and A. Lax [1].
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Chapter Il gives the construction of the fundamental solution
for a linear elliptic equation, and more generally for a linear
elliptic systern, with analytic coefficients. The problem amounts
to finding a solution of the symbolic equation

Liu] =4,

where 4 is the Dirac function. The method of solution given here
amounts to decomposing the Dirac function into plane waves and
thus to reducing the problem to that of finding a solution of
L[u]=1f, where { is a plane wave function. The latter problem in
turn can be solved as a consequence of the theorem of Cauchy
. and Kowalewski. In this way a fundamental solution in the small
is obtained in a form for which it is easy to analyze the nature
of the singularity to any order of magnitude desired.® For
equations with constant coefficients one finds explicit expressions
for the fundamental solution, which only involve quadratures.
This special case is of importance, because it furnishes the
parametrix solutions that can be used for general linear elliptic
equations with non-analytic coefficients. ®

Chapter IV derives expressions for an arbitrary funciion [ in
terms of spherical integrals of f. For the applications it is im-
portant that the radii of the spheré."occuning in those expressions
are bounded away from zero. These formulae form the principal
tool used in the remaining chapters. They can be looked at as
generalizations of the formulae of Chapter I, which express f in
terms of its integrals over planes. The resulting formulae for f
in terms of its spherical means are not particularly elegant. For-
tunately it is only the general form of the expression that matters
for the later applications. The identities in Chapter IV are
closely related to Huygens’ principle for the wave equation and
to certain identities for Bessel functions. They can also be looked
at as the analytic counterpart of the geometrical observation that
spherical shells can be swept out by spheres in two different ways

8 For the case of equations of second order the fundamental solution had
been constructed by Hadamard [1]; book II, Ch. III). See also Thomas and

Titt [1]; Bureau [2), Miranda [1].
* See E. E. Levi [1), John [7], pp. 1556—1862.
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(see Fig. 8), just as the identities of Chapter I are connected with
the fact that the exterior of a sphere can be swept out by planes.!®

Chapter V brings the idemtity of Asgesrsson together with a
somewhat more general identity due to A. Howard. The latter
identity illuminates Asgeirsson’s theorem by relating it to the
geometry of linear families of quadrics in tangential coordinates.
The theorem of Mrs. Howard exceeds the bounds set to this
monograph by its title, in so far as it deals with ellipsoidal means
instead of spherical ones. It has the interesting application that
it permits to transform a homogeneous differential equation of
order 2m with constant coefficients into a similar equation of
order m in more independent variables.

Chapter VI deals mostly with the problem of determining a
function from its integrals over spheres of radius 1. The problem
can be solved on the basis of the identities of Chapter IV. The
solution by decomposition into plane waves of more general pro-
blems for ‘‘mean-periodic” functions is indicated.

Chapter VII gives the main application of the identities on
spherical means derived in Chapter 1V. It presents proofs for
the differentiability of solutions of linear or non-linear elliptic
equations or of systems of equations, provided the coefficients
are sufficiently regular. It also contains a proof for the analyticity
of solutions of linear elliptic equations with analytic coefficients.
(Another proof is implicit in the construction of analytic fun-
damental solutions of such equations in Chapter IIL.)

Chapter VEIII contains an extension of the results of Chapter
VII to linear mon-elliptic equations. Here not the regularity of
the solutioms but of certain imtegral transforms of the solution is
established. More precisely integrals of a solution over a family
of time-like curves with common endpoints are shown to depend
as regular on the parameter distinguishing the members of the
family as the coefficients of the differential equation and the
regularity assumptions on the curves of the family permit.

10 Simﬂnly Asgeirsson’s theorem in 242 dimensions corresponds to the geo-
metrical fact that a hyperboloid of one sheet is covered by straight lines in two
distinct ways. See John [B].
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CHAPTER 1

| Decomposition of an Arbitrary Fuanction
into Plane Waves

Explanation of notation

In what follows the letters %, y, 2z, X, Y, Z, &, 0, { will always
stand for the wvectors (%y, ..., %)y Y1 - s Vn)so oo Lo v v 0o L)
in n~dimensional space where # = 2. All other letters will stand

foi scalar variables. The scalar. ﬁroduct Exy, of the vectors x

. and y will be deneted by x. y, the length (x %)% of the vector
% by |x|. The volume element dx, ... dx, will be abbreviated
to dx, while dS, will denote the surface element of a hyper-surface
in n—d;mensmnal space. The spherical surface of radius 1 about
the origin in x-space will be denoted by @, its surface element
by dw,, its total surface measure by w,. The volume of the
unit-sphere in m-space is then (1/#)w,. Integrations are carried
out over the whole range of a variable, unless other limits are
indicated.

The spherical mean of a function of a single coordinate

Let g(s) be a continuous function of the scalar variable s.
Denoting by ¥ a fixed vector, we have in g(y - ) a function of
% == (%,, . . ., X,), Which is constant along the hyperplanes perpen-
dicular to the direction of y; (such a function will be called a
“plane wave” function). We form the integral of g(y - x) over
the solid sphere of radius » about the origin by decomposing the
sphere into plane sections perpendicular to the y-direction. On
the plane y - ¥ = |y |p of distance { p| from the origin the function
g(x . y) has the value g(]y | #). The (» — 1)-dimensional inter-

7
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section of that plane with the sphere has the volume (see Fig. 1)

Dt a _ pay-re,

n—1
It follows that

n—-1
an | el mae= 2 f 197 glly P

lzl<r

Figure, 1

Dxfferentlatmg with respect to and putting » = 1 we obbtain the
fundamental identity

(1.9 fg(y #)do, —w,.-lj (1= $)=7g( Iy p)dp = a,(I3])

Jfor the mtegral of a plane wave ﬁmctmn over the unitsphere,
~ valid for # = 2. [Here A is defined by (1.2).]
For g(s) = const. =1 we have b =1, and (1.2) yields the
recursion formula
‘ G
w, _ F( )\

13 —= f(l — pR) O gy

Wy . ) ”.
= r (?)
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From this formula one derives the well known value

2V an

r(3)

for the surface area of the unit sphere in #-space. 1
For g(s) = * we find

(1.4) ®, =

=t PP+ 1)

1
1.8) hs) =223 [ — )T swap = E D 1,
|

where [, is the Bessel function of index » = (n — 2)/2.12
Taking g(s) = |s |* and g(s) = |s|*log|s| in (1.2) yields
- respectively the identities :

2vn"? P(fil.)

. k —_ - 2 k
Q, 2
2vV=" I (___k + l)
1) [y siogly-sldo,=—— 2|y (ogly| +ou)
o E )
* 2

with a certain numerical constant c,,. Formulae (1.8), (1.7) have
been derived under the assumption that g(s) is continuous, and

hence that k& > 0; they.obviously then also hold for 2 = 0. They
~ form the basis of the decomposition of an arbitrary function
into plane waves, discussed in ‘the next section.

Representation of a function by its plane integrals
We consider an arbitrary function f(x) of class C,, which

1 See Courant-Hilbert [1], vol. II, p. 223.
13 This is essentially Poisson’s representation of the Bessel functions. See
Magnus-Oberbettinger [1], p. 28, § 5.
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vaniShes outside a bounded set.13 Then

(18) we) = [1 2=,

is a function of z of class C s, Which satisfies Poisson’s differential
equation

(1.9) : Au(z) = f(2)
where 4, denotes the Laplacean with respect to the variables

Zy, v« Zp (For m =2 the kemnel has to be replaced by
(1/2x) log |y — z|.) For the proof 14 of (1.9) we observe that

=227 [ 10) 6, —2) ly—2 [y

—1
= Z?G—ziff(y—}_z)y‘ |y [—dy

I'e

= winfj ff.,(y + 2y |y [Ty

~Limy f fuly + 271y 17 dy

WDy >0
ly|>r

I

-——l—l'imZ[ f y:|y|-"/(y+z)d5 —ff(y+z (v;lyl‘")dy

Wy r>0 ¢
(o= jel>r

= —timr= | fly + 2)d, = £(2)
" |y|=r

The proof of Poisson’s equation has been given here in detail,
because of its fundamental impottance for what follows, since
most of the differentiations of singular integrals that will have
to be carried out will be reduced to this one formula. It may be
mentioned that the same equation can be established under the
milder assumption that f(x) satisfies a Holder condition. 1§

13 f(x) is of class C,, if f and all its derivatives of orders == m are continuous.

14 See Courant-Hilbert [1), vol. II, p. 228.
1% See Kellog [1], p. 156.
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We now take for even » identity (1.7), for odd » identity (1.6),
replace y by y — 2, multiply with /(y) and integrate over all y.
. (Westill assume that f is of class C; and vanishes outside a bounded
set.) We choose for % a non-negative integer such that # 4 %
is an even number, and apply the operator 4, to the resulting
equation (n - k)/2-times. Observing that

4|y —z[F=k(k+n—2) |y —z[*?

we find respectively for odd and even # > 2

(L92) (4,3 y—z}*
() ()e()
— . 31Ym-1)2),__ o i3-n
T (1) Ry —z]
(L9b)  (4,)*5R|y — 2 |* log|y—z|

_ onitk— 2p(k+2)p(fi2_2)l’(-%) (—V-'l)(""*”ﬂy—z]’-"

2—n

Hence from (1.8), (1.7), (1.9)
U] ( f 1) 10 —2) - 2[*do) dy = (2} b1f2)
for odd # and =1, 3 5,.

(L) (4, )‘~+*>'*j(ff(y)(<y—z) x)*logl(y—z) xldw)dy

= — (2w)" k1 f(2)
Teven #nand k=0, 2, 4,. (also for n = 2).
e can formally combine these formulae for even and odd =

=y — o f([rono -2 x
Q.

log [Tl- y—2)- x]dm,)dy]
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where log s denotes the principal branch of that function defined
in the complex s-plane slit along the negative real axis. '

Formulae (1.10), (1.11) represent a solution of the problem
of obtaining a function f(z) as a linear combination of ‘“‘plane
wave”’ functions of 2. These plane waves here either have the
form [(y — z) -z [*or ((y — 2) - x)*log | (y — 2) - x|. A different
solution of the same problem is of course given by the Fourier
integral representing f:

f(z) = jg(y)e""dy.

which decomposes f(z) into the plane wave functions &%, The
advantage of the formulae (1.10), (1.11) is that the integrals
contain | itself instead of its Fourier transform.

Formulae (1.10), (1.11) can also be interpreted as expressing
f(z) in terms of the integrals of f over hyper-planes. For || =1

(1.12) T168) = | e,

Y =9
represents the integral of f over the hyperplane with unit normal
x and (signed) distance $ from the origin. By definition (1.12)
J(x, p) = J(—x — ). Taking for an odd » formula (1.10)
with 2 =1 we have -

(1.13) J'jf(y)l(y-—x) | doudy = J'dw fl?ldﬁff(y)ds

—o (v—8) o=y

—fdw flplf(x b+ 1)ip

Observing tha.t for | x| =1

+@
a [ 19176 p+2-5)2p .

L4 e -I
.—..4,[ [o—z-n16p0ip~ [ =227 prap
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we find from (1.10) that for odd‘n
(L) 20 = (2o | T x

Here the integral represents (except for a constant factor w,)
the average of the plane integrals of f for the planes passing
through the point z. A similar formula can be derived for even
7 from (1.11) with 2 = 0. We noticé here that for | x| =1

+o +o
A.flog |p|f(x.p+z-xw=j (1og | #] \Tonle, p-+2 - )i

_f(1°g|ﬁ—z 2 %)) J (%, P)J,,:_J'

a7, )

P—=x-2

P

where in the last two integrals the Cauchy principal value is to
be taken. Then from (1.11) for even n

=00

(L16)  (2mi)f(e) = (A)om [ dw, [ ELE2L
_ : p—z-x
Q, P
Expressions equivalent to (1.14), (1.15) for a furction f(z) in
terms of its plane integrals J were first given by J. Radon 1.
Expressions of a different type, related to the solution of the wave
equation have been given by Ph. Mader, 17

14 See Radon [1], Bureau [9], ch. IX.
17 See Mader [1].






