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Foreword

The fundamental aspect of the Internet architecture that distinguishes it
from other network technologies (such as X.25 and ATM) is that it is con-
nectionless (vs. connection-oriented) and stateless (vs. stateful). The heated
debate of whether connection-oriented or connectionless architecture is better
has lasted for several decades. Proponents of the connectionless architecture
point out the great robustness and scalability properties of the architecture,
as demonstrated by the Internet. One well-known articulation of this philoso-
phy is the “End-to-End Arguments”. Opponents argue, rightfully, that there
is no known solution that can provide quantitative performance assurances
or guaranteed QoS in a connectionless network. It has been widely recog-
nized that QoS is a must-have feature as the Internet technology evolves
to the next stage. However, all existing solutions that provide guaranteed
QoS require routers to maintain per flow (another name for connection used
by the Internet community) state, which is the fundamental element of a
connection-oriented architecture. The apparent conflicting goals of having a
stateless network and supporting QoS have presented a great dilemma for
Internet architects. As an example, Dave Clark, one of the most respected
Internet architects and the author of the famous “End-to-End Arguments”
paper, was also a key designer of the Internet Integrated Services Architecture
that requires routers to maintain per flow state.

Dr. Ion Stoica’s dissertation addresses this most pressing and difficult
problem facing the Internet community today: how to enhance the Internet
to support rich functionalities (such as QoS and traffic management) while
still maintaining the scalability and robustness properties embodied in the
original Internet architecture.

In his dissertation, Dr. Stoica proposes a novel architecture called SCORE
(Stateless Core) that does not require core routers to maintain per flow state
yet can provide services similar to those provided by stateful networks. This
is achieved by a family of SCORE distributed algorithms that approximate
the services provided by idealized stateful networks. The key technique used
to implement a SCORE network is Dynamic Packet State (DPS), which uses
extra state carried in packet headers to coordinate distributed algorithms im-
plemented by routers. Such an architecture has both important theoretical
and practical significances. From a conceptual point of view, this architecture
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is the first that combines the advantages of stateful and stateless networks,
and can therefore achieve QoS, scalability, and robustness simultaneously.
From a practical point of view, the industry and the IETF have been strug-
gling to make a choice between two QoS architectures: the stateful Intserv,
which can provide hard QoS guarantees but is less scalable and robust, and
the stateless Diffserv, which is more scalable and robust but cannot pro-
vide services with high assurance. The SCORE architecture provides a third
approach that is superior.

I believe that this research represents one of the most important and
innovative contributions in networking research in the past decade. I hope
that you will enjoy reading it and agree with me afterward.

Hui Zhang



Preface

This book contains the dissertation the author wrote at the Department of
Electrical and Computer Engineering (ECE) at Carnegie Mellon University.
This thesis was submitted to the ECE department in conformity with the
requirements for the degree of Doctor of Philosophy in 2000. It was honored
with the 2001 ACM Doctoral Dissertation Award.

Abstract

Today’s Internet provides one simple service: best-effort datagram delivery.
This minimalist service allows the Internet to be stateless, that is, routers do
not need to maintain any fine-grained information about traffic. As a result
of this stateless architecture, the Internet is both highly scalable and robust.
However, as the Internet evolves into a global commercial infrastructure that
is expected to support a plethora of new applications, such as IP telephony,
interactive TV, and e-commerce, the existing best-effort service will no longer
be sufficient. As a consequence, there is an urgent need to provide more
powerful services such as guaranteed services, differentiated services, and flow
protection.

Over the past decade, there has been intense research toward achieving
this goal. Two classes of solutions have been proposed: those maintaining the
stateless property of the original Internet (e.g., differentiated services), and
those requiring a new stateful architecture (e.g., integrated services). While
stateful solutions can provide more powerful and flexible services, such as per
flow bandwidth and delay guarantees, they are less scalable than stateless so-
lutions. In particular, stateful solutions require each router to maintain and
manage per flow state on the control path, and to perform per flow classifi-
cation, scheduling, and buffer management on the data path. Since today’s
routers can handle millions of active flows, it is difficult, if not impossible,
to implement such solutions in a scalable fashion. On the other hand, while
stateless solutions are much more scalable, they offer weaker services.

The key contribution of this dissertation is to bridge this long-standing
gap between stateless and stateful solutions in packet-switched networks such
as the Internet. Our thesis is that “it is actually possible to provide services as
powerful and as flexible as the ones implemented by a stateful network using a
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stateless network”. To prove this thesis, we propose a novel technique called
Dynamic Packet State (DPS). The key idea behind DPS is that, instead of
having routers maintain per flow state, packets carry the state. In this way,
routers are still able to process packets on a per flow basis, despite the fact
that they do not maintain any per flow state. Based on DPS, we develop a
network architecture called Stateless Core (SCORE) in which core routers
do not maintain any per flow state. Yet, using DPS to coordinate actions of
edge and core routers along the path traversed by a flow allows us to design
distributed algorithms that emulate the behavior of a broad class of stateful
networks in SCORE networks.

In this dissertation we describe complete solutions including architectures,
algorithms, and implementations which address three of the most important
problems in today’s Internet: providing guaranteed services, differentiated
services, and flow protection. Compared to existing solutions, our solutions
eliminate the most complex operations on both the data and control paths in
the network core, i.e., packet classification on the data path, and maintaining
per flow state consistency on the control path. In addition, the complexities of
buffer management and packet scheduling are greatly reduced. For example,
in our flow protection solution these operations take constant time, while in
previous solutions these operations may take time logarithmic in the number
of flows traversing the router.
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1 Introduction

Today’s Internet provides one simple service: best effort datagram delivery.
Such a minimalist service allows routers to be stateless, that is, except for the
routing state, which is highly aggregated, routers do not need to maintain
any fine grained state about traffic. As a consequence, today’s Internet is
both highly scalable and robust. It is scalable because router complexity does
not increase in either the number of flows or the number of nodes in the
network, and it is robust because there is little state, if any, to update when
a router fails or recovers. The scalability and robustness are two of the most
important reasons behind the success of today’s Internet.

However, as the Internet evolves into a global commercial infrastructure,
there is a growing need to provide more powerful services than best effort such
as guaranteed services, differentiated services, and flow protection. Guaran-
teed services would make it possible to guarantee performance parameters
such as bandwidth and delay on a per flow basis. An example would be to
guarantee that a flow receives at least a specified amount of bandwidth, en-
suring that the delay experienced by its packets does not exceed a specified
threshold. This service would provide support for new applications such as
IP telephony, video-conferencing, and remote diagnostics. Differentiated ser-
vices would allow us to provide bandwidth and loss rate differentiation for
traffic aggregates over multiple granularities ranging from individual flows to
the entire traffic of a large organization. An example would be to allocate to
one organization twice as much bandwidth on every link in the network as
another organization. Flow protection would allow diverse end-to-end con-
gestion control schemes to seamlessly coexist in the Internet, protecting the
well behaved traffic from the malicious or ill-behaved traffic. For example,
if two flows share the same link, with flow protection, each flow will get at
least half of the link capacity independent of the behavior of the other flow,
as long as the flow has enough demand. In contrast, in today’s Internet, a
malicious flow that sends traffic at a higher rate than the link capacity can
provoke packet losses to another flow no matter how little traffic that flow
sends!

Providing these services in packet switched networks such as the Internet
has been one of the major challenges in the network research over the past
decade. To address this challenge, a plethora of techniques and mechanisms
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have been developed for packet scheduling, buffer management, and signal-
ing. While the proposed solutions are able to provide very powerful network
services, they come at a cost: complexity. In particular, these solutions usu-
ally assume a stateful network architecture, that is, a network in which every
router maintains per flow state. Since there can be a large number of active
flows in the Internet, and this number is expected to continue to increase at an
exponential rate, it is an open question whether such an architecture can be
efficiently implemented. In addition, due to the complex algorithms required
to set and preserve the state consistency across the network, robustness is
much harder to achieve.

In summary, while stateful architectures can provide more sophisticated
services than the best effort service, stateless architectures such as the current
Internet are more scalable and robust. The natural question is then: Can we
achieve the best of the two worlds? That is, is it possible to provide services
as powerful and flexible as the ones implemented by a stateful network in a
stateless network?

In this dissertation we answer this question affirmatively by showing that
some of the most representative Internet services that require stateful net-
works can indeed be implemented in a mostly stateless network architecture.

(O edge node D core node

a) Reference Stateful Network b) SCORE Network

Fig. 1.1. (a) A reference stateful network whose functionality is approximated by
(b) a Stateless Core (SCORE) network. In SCORE only edge nodes maintain per
flow state and perform per flow management; core nodes do not maintain any per
flow state.

1.1 Main Contribution

The main contribution of this dissertation is to provide the first solution that
bridges the long-standing gap between stateless and stateful network archi-
tectures. In particular, we show that three of the most important Internet
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services proposed in literature during the past decade, and for which the
previous known solutions require stateful networks, can be implemented in a
stateless core network. These services are: (1) guaranteed services, (2) service
differentiation for large granularity traffic, and (3) flow protection to provide
network support for congestion control.

The main goal of our solution is to push the state and therefore the
complexity out of the network core, without compromising network ability to
provide per flow services. The key ideas that allow us to achieve this goal are:

1. instead of having core nodes maintain per flow state, have packets carry
this state, and

2. use the state carried by the packets to implement distributed algorithms
to provide network services as powerful and as flexible as the ones imple-
mented by stateful networks

The following paragraphs present the main components of our solution:

The Stateless Core (SCORE) Network Architecture The basic build-
ing block of our solution is the Stateless Core (SCORE) domain. We define
a SCORE domain as being a trusted and contiguous region of network in
which only edge routers maintain per flow state; the core routers do not
maintain any per flow state (see Figure 1.1(b)). Since edge routers usually
run at a much lower speed and handle far fewer flows than core routers, this
architecture is highly scalable.

The “State-Elimination” Approach Our ultimate goal is to provide
powerful and flexible network services in a stateless network architecture.
To achieve this goal, we propose an approach, called “state-elimination” ap-
proach, that consists of two steps (see Figure 1.1). The first step is to define
a reference stateful network that implements the desired service. The second
step is to approximate or, if possible, to emulate the functionality of the ref-
erence network in a SCORE network. By doing this, we can provide services
as powerful and flexible as the ones implemented by a stateful network in a
mostly stateless network architecture, i.e., in a SCORE network.

The Dynamic Packet State (DPS) Technique To implement the
approach, we propose a novel technique called Dynamic Packet State (DPS).
As shown in Figure 1.2, with DPS, each packet carries in its header some state
that is initialized by the ingress router. Core routers process each incoming
packet based on the state carried in the packet’s header, updating both its
internal state and the state in the packet’s header before forwarding it to
the next hop. In this way, routers are able to process packets on a per flow
basis, despite the fact that they do not maintain per flow state. As we will
demonstrate in this dissertation, by using DPS to coordinate the actions of
edge and core routers along the path traversed by a flow, it is possible to
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S
Fig. 1.2. An illustration of the Dynamic Packet State (DPS) technique used to
implement per flow services in a SCORE network: (a-b) upon a packet arrival
the ingress node inserts some flow dependent state into the packet header; (b-c) a
core node processes the packet based on this state, and eventually updates both
its internal state and the packet state before forwarding it. (c-d) the egress node
removes the state from the packet header.

design distributed algorithms to approximate the behavior of a broad class of
stateful networks using networks in which core routers do not maintain per
flow state.

The “Verify-and-Protect” Approach  While our solutions based on
SCORE/DPS have many advantages over traditional stateful solutions, they
still suffer from robustness and scalability limitations when compared to
stateless solutions. The scalability of the SCORE architecture suffers from
the fact that the network core cannot transcend trust boundaries (such as
boundaries between competing Internet Service Providers), and therefore
high-speed routers on these boundaries must be stateful edge routers. Sys-
tem robustness is limited by the possibility that a single edge or core router
may malfunction, inserting erroneous information in the packet headers, thus
severely impacting performance of the entire network.

In Chapter 7 we propose an approach, called “verify-and-protect”, that
overcomes these limitations. We achieve scalability by pushing the complexity
all the way to the end-hosts, eliminating the distinction between edge and core
routers. To address the trust and robustness issues, all routers statistically
verify that the incoming packets are correctly marked. This approach enables
routers to discover and isolate misbehaving end-hosts and routers.



