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Preface

This book is an attempt to show the unifying and central role which
matroids have played in combinatorial theory over the past decade. This is
not to say that all aspects of combinatorial theory can be covered by the
matroid umbrella; however, many parts of graph theory, transversal theory,
block designs and combinatorial lattice theory can be more clearly under-
stood by the usc of matroids. Furthermore, since matroids are closely related
to classical linear algebra and geometry they serve as a link between com-
binatorics and the more mainstream areas of mathematics.

The first half of this book can be regarded as a basic introduction to matroid
theory. Most theorems are proved or an exact reference is given. The second
half is an attempt to place the reader at the frontier of the subject. At this
level I have found it impossible to prove every result. However I have, I hope,
treated in some detail the more central and important topics, others I have set
as exercises. Those exercises which are followed by a reference to some paper
will usually be non-routine.

[ have lectured on most of this book at various universities; the first half is
the core of a course on combinatorics that I have given to third year under-
graduatcs at Oxford. The other chapters have been covered at various times
in M.Sc. level courses at Oxford and Waterloo.

I take this opportunity to acknowledge a deep sense of gratitude to a num-
ber of friends who in different ways helped in the production of this book.

C. St. J. A. Nash-Williams first introduced me to the subject with a most
_stimulating seminar on the applications of matroids in 1966. I am also very
grateful to him for making it possible for me to visit the University of Waterloo
where an early draft of the first half was prepared. F. Harary encouraged me
to write this book and enabled me to try out a very preliminary version at the
University of Michigan, Ann Arbor. The bulk of the book in its present form
was drafted in the very happy and stimulating atmosphere of the mathematics
department of the University of Calgary. I am deeply grateful to the depart-
ment there and in particular to E. C. Milner for his unfailing kindness and
patience in listening to my problems and queries.

I began to make a list of the people who had helped me over the last seven
years either in discussion or by correspondence—it came to almost half the
names listed in the bibliography. However, I do need to say that special
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thanks arc duc to D. W. T. Bean, A. W. Inglcton, C. J. H. McDiarmid, *

.+ LR Mathews ind J. G. Oxles; each of whoea réad substuntial parts of the

manuscript and had many helpful discussions on various points that have
-arisen. : : : e ’

Finally I would like to thank Clare Bass, Sheila Robinson and my wife
" Bridget for their help in preparing the final manuscript.

Merton College Dominic Welsh
“and 2 :
. The Mathematical Institute, Oxford

July 1975 B <
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Preliminaries

1. BASIC NOTATION

A reference to “item k” refers to item k of the same section; (j.k) refers to
the same chapter; (i,j.k) refers to item k of section j of chapter i.

A reference [k] refers to item k of the bibliography. References.are by
author’s name and the last two digits of the year of publication, with additional
letters to distinguish publications of the same author in the same year.

There are exercises at the end of most sections: the open problems are
marked ©.

2. SET THEORY NOTATION

Throughout we adopt the usual set theoretic conventions: set-union,
set-intersection, set inclusion and proper inclusion are denoted by the familiar
symbols U, N, €, <, respectively.

For the most part we shall be considering structures on a finite set S.
Elements of S will be denoted by lower case italic letters and subsets of S
by italic capital letters. The empty set is denoted by &; A\B denotes the
set difference of A and B: A A B denotes the symmetric difference of A and B,

AAB = (A\B)U (B\A). .

Two sets A, B are incomparable if neither is a subset of the other. As usual
{X,,.-, X} denotes the set with elements x,, ..., x, and when it is clear from
the context that we are referring to a set rather than an element. we abbreviate
{x} to x. For example X L x means X v {x}, X\x means X\{x}.

| A| denotes the cardinality of the set A, and we write X is a k-set (k-subset)
if X is a set (subset) of cardinality k. Suppose that we have a set 4; for each i
in a non-empty indexing set 1. We use A(D) to denote the union of the A,.‘;"
iel. Thatis ; ey : :
S A = {x:xed,for some iel}.

1



2 PRELIMINARIES

A function or map from S toT is denoted by /:8— T. If x belongs to the
domain ol f, f(x) is called the image of x, and for A < S, the mage of A,
denoted by f(A) = {y:yeT, f(x) = y for some y € A}.

TV is a subset of S we denote the restriction of f to U by f],.
The power set 2% of S is the collection of subsets of S and a map ¢:S - T
defines in the obvious way a map
' 2¢:25 2T
'whcrc for X< S,
2°X = {yiy = ¢x for some xeX).

As usual we normally write ¢ X rather than 24X,

If S and I are sets and ¢:1 — S is a map with ¢(i) = x; for all i e I we will
often denote this map ¢ by the symbol (x;:i € I) and call it a family of elements
of § indexed by I or with index set I. A family is thus a map not a set, though
loosely speaking it can often be thought of as a collection of labelled objects
of 5. A subsct X of S is a maximal (minimal) subset of S possessing a given
property P il-X possesses property P and no set properly containing X
(contained in X) possesses P. :

The sct of integers is denoted by Z. The set of real numbers by R. The sets
of non-negative integers and real numbers are denoted respectively by Z*
and R,

3. ALGEBRAIC STRUCTURES

I shall assume familiarity with the basic algebraic structures such as a
group, lield, or vector space.

The finite, field with g elements will be denoted by GF(q) and I use kx4,
-+ X,) to denote ‘the minimal extension field of the field F generated by
Xyy «ooy X0 V(F) denotes the vector space of dimension n over the field F,
V.(q) denotes the vector space of dimension n over the field GF(q).

A typical element v of a vector space will be denoted. by v or (U5, 0.)
wherc n is the dimension of the space. The zero vector is denoted by 0.

Now for any field F consider the vector space V¥ of all vectors (ay, ..., a,),
a,;€ F. 1l u, v are two members of ¥\0 we write u ~ v if there exists some non-
zero member b of F such that u = bv. It is easy to check that ~ is an equiva-
lence relation on ¥\0. The equivalence classes under this relation are the
points of the projective geometry of dimension n'over F. When F is the finite
field GF(q) we denote this projective geometry by PG(n, g).

For a further discussion of projective geometries we refer to Chapter 12
(where we study them in more detail), or to the recent book of Bumcrot [69].



ALGEBKAIC DIKULLURED 3

Unless specified a vector will mean a row vector and if x is a vector, X' is
its transpose and xy" will denote the scalar product of x and y. Similarly A’
will denote the transpose of the matrix A.

4. GRAPH THEORY

We assume familiarity with the concepts of a graph and a directed or
oriented graph which we call a digraph. We denote a graph G by a palr'
(V(G), E(G)) where V = V(G) is the vertex set and ‘E = E(G) is the set of
L(lg(.")

The edge e = (4, v) is said to join the vertices u and v. If e = (u,v) is an
edge of G, then u and v arc adjacent vertices while u and v are called the
endpoints ol the edge e = (u, v). If two edges e,, e, have a common endpoint
they are said to be incident. We often denote the edge e = (u, v) by uv or vu.

A loop of a graph is an edge of the type (x, x). Two edges are parallel if they
have common endpoints and are not loops.

A graph is simple if it has no loops or parallel edges.

The degree of a vertex v is the number of edges having G as an endpomt
and is denoted by deg(v). A graph is regular if all its vertices have the same
degree.

Two graphs G,, G, are isomorphic if there is a bijection ¢: V(G,) » V(G,)
such that if u,ve V(G) the number of edges joining u,v in G, equals the
number of edges joining ¢(u) and ¢(v) in G,. ’

A vertex u of G is an isolated vertex if deg(u) = 0. An edge uv of G is a
pendant edge if either u or v, but not both, has degree 1 in G.

If G is a graph with vertex set {v,,...,v,} the adjacency matrix of G cor-
: respondmg to the given labelling of the vertex set is the n x n matrix A=(g, N

in which a;; is the number of edges of G joining v, and v;. j

A complete graph is a simple graph in which an edge joins each pair of
vertices. The complete graph on n vertices is denoted by _K,.

If the vertex set of a graph can be divided into two dlSjOlnI sets an
such a way that every edge of the graph joins a vertex of ¥, to a vertex of V .
the graph is sdid to be a bipartite graph. We often denote such a graph by
AY,, V,; E) if we wish to specify the two sets involved, and where A signifies
that thc graph'in question is bipartite.

If a bipartite graph A(V,, V,; E) has the property that every vertex of ¥, is
joined to every vertex of V,. and it is simple then it is called a complete
bipartite graph and is usually denoted by K, , where m = | V| and n = | V,|.
“Fi lgune 1 shows the complete graph K, and the complete bnpartlte graph
]G b
A pathi m G is a finite sequence of distinct edgcs of the form (vo, v, 0y, vz),
w90, The iength of thls path is m and it is saxd to connect v, and v,,
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Figure 1’

The vertices v, and v,, are called respectively the initial and terminal vertices
‘of this path. The vertices v,, i # 0, i # m are interior vertices of this path. A
cycle is a path in which v; # v; for i # j except that v, = v, .

If we define a relation ~ on V(G) by x ~ yif x = y or there is a path in G
joining x and y then it is easy to verify that ~ is an equivalence relation on
V(G). The distinct equivalence classes are called the connected components
of G. If there is one component G is connected.

A subgraph of a graph G = (V, E) is a pair (U, F) where U& V and F S E,
with the proviso that if e = (4, v) € F then u and v-are members of U.

If A is any set of edges of G'we let ¥(A4) denote those vertices of G which
are endpoints of some edge of A and then call (V(A), A) the subgraph generated
by A. We will use G| A4 to denote the subgraph generated by A4, though often
we abbreviate this to A when it is clear from the context.

Thus for example if P is the set of edges of some path in G and e ¢ P is an
edge of G, the statement “e U P is a path” will mean e is incident with either
the initial or terminal vertex of P and is not incident with any interior vertex
of P. Similarly if A < E(G) the statement “A is isomorphic to the complete
graph K,” means that the subgraph generated by A is isomorphic to K,.
If X € V(G), we let G\X denote the subgraph obtained by deleting X ‘and all
~ edges incident with X from G. :

A subgraph of G is a spanning subgraph il it has vertex set V(G).

A tree is a graph ‘which has no cycles and is connected. A forest is a graph
which has no cycles. A spanning forest of G is union of spanning trees of its
connected components. A spanning tree is a spanning subgraph which is a
tree. It is easy to prove that G is connected if and only if it has a spanning tree,
and that such a spanning tree must have exactly | V(G)| — 1 edges. .

If U < V(G) we let G\U denote the subgraph of G obtained by removing
U and all its incident edges. A connected graph is n-connected for some posi-
tive integer n if there exists no set U < V(G) with |U| < n such that G\U is
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(a) (b)

Figure 2

disconnected or a single vertex. Figures 2(a) and (b) show respectively a
1-connected and 2-connected graph.

A vertex u of a connected graph G such that G\{u} is disconnected is called
a cut vertex of G.

More technical terms such as planarity, homeomorphism and so on are
defined as they arise in the text. Moreover we often redefine graph theory
terms as they are used to save the reader not too familar with graphs having
to look back. g

In a digraph G = (V, E) we often denote an edge directed from the vertex
u to the vertex v by (u, v) and call u(v) respectively the initial (terminal) vertices
of the edge. A path in a digraph is a finite sequence of distinct edges of the
form (v, v, ) (v;,V;), -+, (0, ;5 V,,) Where the v, are distinct vertices. Such a
path is said to pass through the vertices v;. Two paths are vertex disjoint if
‘they do not pass through a common vertex. Other terms for digraphs are
defined by obvious analogy with the corresponding terms for graphs.



CHAPTER 1

Fundamental Concepts and Examples

1. INTRODUCTION

Matroid theory dates from the 1930’s when van der Waerden in his “Moderne
Algebra” first approached linear and algebraic dependence axiomatically
and Whitney in his basic paper [35] first used the term matroid. As the word
suggests Whitney conceived a matroid as an abstract generalization of a
matrix, and much of the language of the theory is based on that of linear
algebra. However Whitneys approach was also to some extent motivated
by his earlier work in graph theory.and as a result some of the matroid
terminology has a distinct graphical flavour. . .

Apart from isolated papers by Birkhoff [35], MacLane [36], [38] and -
Dilworth [41], [41a], [44], on the lattice theoretic and geometric aspects
of matroid theory, and two important papers by Rado on the combinatorial
applications of matroids [42] and infinite matroids [49], the subject lay
virtually dormant until Tutte [58], [59], published his fundamental papers
on matroids and graphs and Rado [57] studied the representability problem
for matroids. Since then interest in matroids and their applications in
combinatorial theory has accelerated rapidly. This is probably due to the
discovery independently by Edmonds and Fulkerson [65] and Mirsky and
Perfect [67] of a new, important class of matroids called transversal matroids.
Itis in the field of transversal theory that matroids seem so far to have had the
most eflect (measured in terms of new results obtained or easier proofs found
of known results). In graph theory the main benefit of a matroid treatment
scems to be a much more natural understanding of dual concepts such
as the structure of the set of cocycles or the effect of contraction of a set
of edges of a graph. The beauty and 1mporlanoe of matroids is perhaps
best appreciated by the study of two covering and packing theorems
of Edmonds [65], [65a]. These results give as easy corollaries, éarlier very
difficult, and intricate theorems of graph theory due to Tutte [61], and Nash-
Williams [61], [64] a theorem about vector spaces due to Horn [55] and
several results in transversal theory proved earlier by Higgins [59], Ore [55]

6
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and others. They illustrate perfectly the principle that mathematical generali-
cation often lays bare the important bits of information about the problem

- at hand.

As is often the case with young subjects, the matroid terminology varies
considerably from author to author. Even the term matroid is rejected by
many. Mirsky and Perfect [67] use “independence space”, Cmpo and Rota
in their monograph [70] on combinatorial geometries use “pregeometry”
for “matroid”; Rado’s work is in terms of “independence functions™; Cohn
[65] uses the term “transitive dependence relation™.

2. AXIOM SYSTEMS FOR A MATROID

As will be seen, a matroid may be defined in many different but equivalent
ways, several of which were described in Whitney’s original paper. Deciding
which set of axioms would be the most natural to start with was difficult.

‘T have eventually settled on “independence axioms™ because I think they
will be the most natural to the average reader.

Matroid theory has exactly the same relationship to linear algebra as
does point set topology to the theory of real*variable. That is, it postulates
certain seis to be “independent” (=lincarly independent) and develops a
fruitful theory from certain axioms which it demands hold for this collection
of independent sets.

A matroid M is a finite sct S.and a collection £ of subsets of § (called
independent sets) such that (11)-(13) are satisfied.

(11) Jes.

(I2) IfXes and Y< X then Ye.f

- (13) If U,V are mémbers of # with |U| = |V| + 1 there exists x € U\V
suchthat ¥V U x € .#.

A subset of S not belonging to # is called dependent.

Example. Let V be a finite vector space and let # be the collection of linearly
independent subsets of vectors of V. Then (V, .#) is a matroid.

Following the analogy with vector spaces we make the following definitions.

A base of M is a maximal independent subset of S, the collection of bases is
denoted by # or B(M).

The rank function of a matroid is a function p:25 — Z defined by

pA =max(|X|: XS A, XeS) (ASS).

The rank of the matroid, M sometimes denoted by pM, is the rank of the
set S



