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Preface

This book discusses self-testing techniques in embedded processors.
These techniques are based on the execution of test programs aiming to
lower the cost of testing for processors and surrounding blocks.

Manufacturing test cost is already a dominant factor in the overall
development cost of Integrated Circuits (IC). Consequently, cost effective
methodologies are continuously seeked for test cost reduction. Self-test, the
ability of a circuit to test itself is a widely adopted Design for Test (DIT)
methodology. It does not only contribute to the test cost reduction but also
improves the quality of test because it allows a test to be performed at the
actual speed of the device, to detect defect mechanisms that manifest
themselves as delay malfunctions. Furthermore, self-test is a re-usable test
solution. It can be activated several times throughout the device’s life-cycle.
The self-testing infrastructure of a chip can be used to detect latent defects
that do not exist at manufacturing phases, but they appear during the chip’s
operating life

The application of self-testing, as well as, other testing methods, face
serious challenges when the circuit under test is a processor. This is due to
the fact that processor architectures are particularly sensitive to performance
degradation due to extensive design changes for testability improvement.
DfT modifications of a circuit, including those that implement self-testing,
usually lead to area, performance and power consumption overheads that
may not be affordable in a processor design. Processor testing and self-
testing is a particularly challenging problem due to sophisticated complex
processor structure, but it is also a very important problem that needs special
attention because of the central role that processors play in every electronic
system.

In this book, an emerging self-test methodology that recently captured
the interest of test technologists is studied. Software-based self-testing, also
called processor-based self-testing, takes advantage of the programmability
of processors and allows them to test themselves with the effective execution
of embedded self-test programs. Moreover, software-based self-testing takes
advantage of the accessibility that processors have to all other surrounding
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blocks of complex designs to test these blocks as well with such self-test
programs. The already established System-on-Chip design paradigm that is
based on pre-designed and pre-verified embedded cores employs one or
more embedded processors of different architectures. Software-based self-
testing is a very suitable methodology for manufacturing and in-field testing
of embedded processors and surrounding blocks.

In this book, software-based self-testing is described, as a practical, low-
cost, easy-to-apply self-testing solution for processors and SoC designs. It
relaxes the tight relation of manufacturing testing with high-performance,
expensive IC test equipment and hence results in test cost reduction. If
appropriately applied, software-based self-testing can reach a very high test
quality (high fault coverage) with reasonable test engineering effort, small
test development cost and short test application time.

Also, this book sets a basis for comparisons among different software-
based self-testing techniques. This is achieved by: describing the basic
requirements of this test methodology; focusing on the basic parameters that
have to be optimized; and applying it to a set of publicly available
benchmark processors with different architectures and instruction sets.

Dimitris Gizopoulos Piraeus, Greece
Antonis Paschalis Athens, Greece
Yervant Zorian Fremont, CA, USA
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Chapter 1

Introduction
1

1.1 Book Motivation and Objectives

Electronic products are used today in the majority of our daily activities.
Thus, they enabled efficiency, productivity, enjoyment and safety.

The Integrated Circuits (ICs) realized today consist of multiple millions
of logic gates and even more memory cells. They are implemented in, very
deep sub-micron (VDSM) process technologies and often consist of
multiple, pre-designed entities called Intellectual Property (IP) cores. This
design methodology that allowed the integration of embedded IP cores is
known as Embedded Core-Based System-on-Chip (SoC) design
methodology. SoC design flow supported by appropriate Computer Aided
Design (CAD) tools has dramatically improved design productivity and has
opened up new horizons for successful implementation of sophisticated
chips.

An important role in the architecture of complex SoC is played by
embedded processors. Embedded processors and other cores built around
them constitute the basic functional elements of today’s SoCs in embedded
systems. Embedded processors have optimized design (in terms of silicon
area, performance, power consumption, etc), and provide the means for the
integration of sophisticated, flexible, upgradeable and re-configurable
functionality of a complex SoC. In many cases, more than one embedded
Embedded Processor-Based Self-Test
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2 Chapter 1 - Introduction

processors exist in a SoC, each of which takes over different tasks of the
system and sharing the processing workload.

Issues such as the quality of the final SoC, the reliability of the
manufactured ICs, and the reduced possibility of delivering malfunctioning
chips to the end users, are rapidly getting more importance today with the
increasing criticality of most of electronic systems applications.

In the context of these quality and reliability requirements, complex SoC
designs, realized in dense manufacturing technologies face serious problems
that need special consideration. Manufacturing test of complex chips based
on external Automatic Test Equipment (ATE), as a method to guarantee that
the delivered chips are correctly operating, is becoming less feasible and
more expensive than ever. The volume of test data that must be applied to
each manufactured chip is becoming very large, the test application time is
increasing and the overall manufacturing test cost is becoming the dominant
part of the total chip development cost.

Under these circumstances, which are expected to get worse as circuits
size shrinks and density increases, the effective migration of the
manufacturing test resources from outside of the chip (ATE) to on-chip,
built-in resources and thus the effective replacement of external based
testing with internally executed self-testing is, today the test technology of
choice for all SoCs in practice. Self-testing allows at-speed testing, i.e. test
execution at the actual operating speed of the chip. Thus all physical faults
that cause either timing miss-behavior or an incorrect binary value can be
detected. Also, self-testing drastically reduces test data storage requirements
and test application time, both of which explode when external, ATE-based
testing is used. Therefore, the extensive use of self-testing has a direct
impact on the reduction of the overall chip test cost.

Testing of processors or microprocessors, even when they are not deeply
embedded in a complex system, is known to be a challenging task itself.
Classical testing approaches used in other digital circuits are not adequate to
the carefully optimized processor designs, because they can’t reach the same
efficiency as in other types of digital circuits. Also, self-test approaches,
successfully used to improve the testability of digital circuits, are not very
suitable for processor testing because such techniques usually add overheads
in the processor’s performance, silicon area, pin count and power
consumption. These overheads are often not acceptable for processors which
have been specifically optimized to satisfy very strict area, speed and power
consumption requirements.

This book primarily discusses the special problem of testing and self-
testing of embedded processors in SoC architectures, as well as the problem
of testing and self-testing other cores of the SoC using the embedded
processor as test infrastructure.



