Embedded
Processor-Based
Self-Test

Dimitris Gizopoulos
Antonis Paschalis
Yervant Zorian

wer Academic Publishers

EMBEDDED PROCESSOR-BASED
SELF-TEST

by

DIMITRIS GIZOPOULOS

University of Piraeus, Piraeus, Greece

ANTONIS PASCHALIS
University of Athens, Athens, Greece

and

YERVANT ZORIAN
Virage Logic, Fremont, California, U.S.A.

lHlllllﬂllllllllllUlllllllll

E200601016

KLUWER ACADEMIC PUBLISHERS
BOSTON / DORDRECHT / LONDON

A C.1P. Catalogue record for this book is available from the Library of Congress.

ISBN 1-4020-2785-0 (HB)
ISBN 1-4020-2801-6 (e-book)

Published by Kluwer Academic Publishers,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Sold and distributed in North, Central and South America
by Kluwer Academic Publishers,
101 Philip Drive, Norwell, MA 02061, U.S.A.

In all other countries, sold and distributed
by Kluwer Academic Publishers,
P.O. Box 322, 3300 AH Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved
© 2004 Kluwer Academic Publishers, Boston

No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording

or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered

and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

EMBEDDED PROCESSOR-BASED SELF-TEST

FRONTIERS IN ELECTRONIC TESTING

Consulting Editor
Vishwani D. Agrawal

Books in the series:

Embedded Processor-Based Self-Test
D. Gizopoulos
ISBN: 1-4020-2785-0
Testing Static Random Access Memories
S. Hamdioui
ISBN: 1-4020-7752-1
Verification by Error Modeling
K. Radecka and Zilic
ISBN: 1-4020-7652-5
Elements of STIL: Principles and Applications of IEEE Std. 1450
G. Maston, T. Taylor, J. Villar
ISBN: 1-4020-7637-1
Fault Injection Techniques and Tools for Embedded systems Reliability
Evaluation
A. Benso, P. Prinetto
ISBN: 1-4020-7589-8
High Performance Memory Memory Testing
R. Dean Adams
ISBN: 1-4020-7255-4
SOC (System-on-a-Chip) Testing for Plug and Play Test Automation
K. Chakrabarty
ISBN: 1-4020-7205-8
Test Resource Partitioning for System-on-a-Chip
K. Chakrabarty, Iyengar & Chandra
ISBN: 1-4020-7119-1
A Designers' Guide to Built-in Self-Test
C. Stroud
ISBN: 1-4020-7050-0
Boundary-Scan Interconnect Diagnosis
J. de Sousa, P.Cheun
ISBN: 0-7923-7314-
Essentials of Electronic Testing for Digital, Memory, and Mixed Signal VLSI Circuits
M.L. Bushnell, V.D. Agrawal
ISBN: 0-7923-7991-8
Analog and Mixed-Signal Boundary-Scan: A Guide to the IEEE 1149.4
Test Standard
A. Osseiran
ISBN: 0-7923-8686-8
Design for At-Speed Test, Diagnosis and Measurement
B. Nadeau-Dosti
ISBN: 0-79-8669-8
Delay Fault Testing for VLSI Circuits
A. Krstic, K-T. Cheng
ISBN: 0-7923-8295-1
Research Perspectives and Case Studies in System Test and Diagnosis
J.W. Sheppard, W.R. Simpson
ISBN: 0-7923-8263-3
Formal Equivalence Checking and Design Debugging
-Y. Huang, K.-T. Cheng
ISBN: 0-7923-8184-X
Defect Oriented Testing for CMOS Analog and Digital Circuits

M. Sachdev
ISBN: 0-7923-8083-5

to Georgia, Dora and Rita

Preface

This book discusses self-testing techniques in embedded processors.
These techniques are based on the execution of test programs aiming to
lower the cost of testing for processors and surrounding blocks.

Manufacturing test cost is already a dominant factor in the overall
development cost of Integrated Circuits (IC). Consequently, cost effective
methodologies are continuously seeked for test cost reduction. Self-test, the
ability of a circuit to test itself is a widely adopted Design for Test (DIT)
methodology. It does not only contribute to the test cost reduction but also
improves the quality of test because it allows a test to be performed at the
actual speed of the device, to detect defect mechanisms that manifest
themselves as delay malfunctions. Furthermore, self-test is a re-usable test
solution. It can be activated several times throughout the device’s life-cycle.
The self-testing infrastructure of a chip can be used to detect latent defects
that do not exist at manufacturing phases, but they appear during the chip’s
operating life

The application of self-testing, as well as, other testing methods, face
serious challenges when the circuit under test is a processor. This is due to
the fact that processor architectures are particularly sensitive to performance
degradation due to extensive design changes for testability improvement.
DfT modifications of a circuit, including those that implement self-testing,
usually lead to area, performance and power consumption overheads that
may not be affordable in a processor design. Processor testing and self-
testing is a particularly challenging problem due to sophisticated complex
processor structure, but it is also a very important problem that needs special
attention because of the central role that processors play in every electronic
system.

In this book, an emerging self-test methodology that recently captured
the interest of test technologists is studied. Software-based self-testing, also
called processor-based self-testing, takes advantage of the programmability
of processors and allows them to test themselves with the effective execution
of embedded self-test programs. Moreover, software-based self-testing takes
advantage of the accessibility that processors have to all other surrounding

Xiv Preface

blocks of complex designs to test these blocks as well with such self-test
programs. The already established System-on-Chip design paradigm that is
based on pre-designed and pre-verified embedded cores employs one or
more embedded processors of different architectures. Software-based self-
testing is a very suitable methodology for manufacturing and in-field testing
of embedded processors and surrounding blocks.

In this book, software-based self-testing is described, as a practical, low-
cost, easy-to-apply self-testing solution for processors and SoC designs. It
relaxes the tight relation of manufacturing testing with high-performance,
expensive IC test equipment and hence results in test cost reduction. If
appropriately applied, software-based self-testing can reach a very high test
quality (high fault coverage) with reasonable test engineering effort, small
test development cost and short test application time.

Also, this book sets a basis for comparisons among different software-
based self-testing techniques. This is achieved by: describing the basic
requirements of this test methodology; focusing on the basic parameters that
have to be optimized; and applying it to a set of publicly available
benchmark processors with different architectures and instruction sets.

Dimitris Gizopoulos Piraeus, Greece
Antonis Paschalis Athens, Greece
Yervant Zorian Fremont, CA, USA

Acknowledgments

The authors would like to acknowledge the support and encouragement
by Dr. Vishwani D. Agrawal, the Frontiers in Electronic Testing book series
consulting editor. Special thanks are also due to Carl Harris and
Mark de Jongh of Kluwer Academic Publishers for the excellent
collaboration in the production of this book.

The authors would like to acknowledge the help and support of several
individuals at the University of Piraeus, the University of Athens and Virage
Logic and in particular the help of Nektarios Kranitis and George Xenoulis.

CONTENTS

Contents

\%

List of Figures viii
List of Tables X
Preface xiii
Acknowledgments XV
1. INTRODUCTION 1
1.1 Book Motivation and Objectives 1

1.2 Book Organization 4

2. DESIGN OF PROCESSOR-BASED SOC 7
2.1 Integrated Circuits Technology 7

2.2 Embedded Core-Based System-on-Chip Design 8

2.3 Embedded Processors in SoC Architectures 11

3. TESTING OF PROCESSOR-BASED SOC 21
3.1 Testing and Design for Testability 21

3.2 Hardware-Based Self-Testing 32

3.3 Software-Based Self-Testing 41

3.4 Software-Based Self-Test and Test Resource Partitioning 46

3.5 Why is Embedded Processor Testing Important? 48

3.6 Why is Embedded Processor Testing Challenging? 49

4. PROCESSOR TESTING TECHNIQUES 55
4.1 Processor Testing Techniques Objectives 55

4.1.1 External Testing versus Self-Testing 56

4.1.2 DfT-based Testing versus Non-Intrusive Testing 57

4.1.3 Functional Testing versus Structural Testing 58

4.1.4 Combinational Faults versus Sequential Faults Testing 59

4.1.5 Pseudorandom versus Deterministic Testing 60

4.1.6 Testing versus Diagnosis 62

4.1.7 Manufacturing Testing versus On-line/Field Testing 63

4.1.8 Microprocessor versus DSP Testing 63

4.2 Processor Testing Literature 64

4.2.1 Chronological List of Processor Testing Research 64

4.2.2 Industrial Microprocessors Testing 78

4.3 Classification of the Processor Testing Methodologies 78

5. SOFTWARE-BASED PROCESSOR SELF-TESTING 81
5.1 Software-based self-testing concept and flow 82

5.2 Software-based self-testing requirements 87

5.2.1 Fault coverage and test quality 88

5.2.2 Test engineering effort for self-test generation 90

Vi Contents
5.2.3 Test application time 91
5.2.4 A new self-testing efficiency measure 96
5.2.5 Embedded memory size for self-test execution 97
5.2.6 Knowledge of processor architecture 98
5.2.7 Component based self-test code development 99

5.3 Software-based self-test methodology overview 100
5.4 Processor components classification 107
5.4.1 Functional components 108
5.4.2 Control components 111
5.4.3 Hidden components 112
5.5 Processor components test prioritization 113
5.5.1 Component size and contribution to fault coverage = 115
5.5.2 Component accessibility and ease of test 117
5.5.3 Components’ testability correlation 119
5.6 Component operations identification and selection 121
5.7 Operand selection 124
5.7.1 Self-test routine development: ATPG 125
5.7.2 Self-test routine development: pseudorandom 133
5.7.3 Self-test routine development: pre-computed tests 137
5.7.4 Self-test routine development: style selection 139
5.8 Test development for processor components 141
5.8.1 Test development for functional components 141
5.8.2 Test development for control components 141
5.8.3 Test development for hidden components 143
5.9 Testresponses compaction in software-based self-testing 146
5.10 Optimization of self-test routines 148
5.10.1 “Chained” component testing 149
5.10.2 “Parallel” component testing 152
5.11 Software-based self-testing automation 153
6. CASE STUDIES — EXPERIMENTAL RESULTS 157
6.1 Parwan processor core 158
6.1.1 Software-based self-testing of Parwan 159
6.2 Plasma/MIPS processor core 160
6.2.1 Software-based self-testing of Plasma/MIPS 163
6.3 Meister/MIPS reconfigurable processor core 168
6.3.1 Software-based self-testing of Meister/MIPS 170
6.4 Jam processor core 171
6.4.1 Software-based self-testing of Jam 172
6.5 0c8051 microcontroller core 173
6.5.1 Software-based self-testing of 0c8051 175
6.6 RISC-MCU microcontroller core 176
6.6.1 Software-based self-testing of RISC-MCU 177

Contents

6.7 oc54x DSP Core

6.7.1 Software-based self-testing of oc54x

6.8 Compaction of test responses

6.9 Summary of Benchmarks

7. PROCESSOR-BASED TESTING OF SOC

7.1 The concept

7.1.1 Methodology advantages and objectives
7.2 Literature review

7.3 Research focus in processor-based SoC testing
8. CONCLUSIONS

References

Index

About the Authors

vii

178
179
181
181
185
185
188
190
193
195
197
213
217

LIST OF

Figure 2-1:
Figure 2-2:
Figure 3-1:
Figure 3-2:
Figure 3-3
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:

Figure 5-10:
Figure 5-11:
Figure 5-12:
Figure 5-13:
Figure 5-14:

Figure 5-15

Figure 5-16:
Figure 5-17:
Figure 5-18:
Figure 5-19:
Figure 5-20:
Figure 5-21:

Figure 5-22
Figure 7-1:

FIGURES
Typical System-on-Chip (SoC) architecture. 9
Core types of a System-on-Chip. 11
ATE-based testing. 28
Self-testing of an IC. 34
: Self-testing with a dedicated memory. 38
Self-testing with dedicated hardware. 39
Software-based self-testing concept for processor testing. 42

Software-based self-testing concept for testing a SoC core. 43
Software-based self-testing for a processor (manufacturing). 82

Software-based self-testing for a processor (periodic). 84
Application of software-based self-testing: the three steps. 86
Engineering effort (or cost) versus fault coverage. 91
Test application time as a function of the K/W ratio. 94
Test application time as a function of the f,p/fi.s.: ratio. 95
Software-based self-testing: overview of the four phases. 102
Phase A of software-based self-testing. 103
Phase B of software-based self-testing. 104
Phase C of software-based self-testing. 105
Phase D of software-based self-testing. 107
Classes of processor components. 108
Prioritized component-level self-test program generation. 114
ALU component of the MIPS-like processor. 122
: ATPG test patterns application from memory. 129
ATPG test patterns application with immediate instructions. 131
Forwarding logic multiplexers testing. 145
Two-step response compaction. 147
One-step response compaction. 147
“Chained” testing of processor components. 150
“Parallel” testing of processor components. 153
: Software-based self-testing automation. 154

Software-based self-testing for SoC. 186

LIST OF TABLES

Table 2-1: Soft, firm and hard IP cores.

10

Table 2-2: Embedded processor cores (1 of 3).

15

Table 2-3: Embedded processor cores (2 of 3).

16

Table 2-4: Embedded processor cores (3 of 3).

17

Table 4-1: External testing vs. self-testing.

57

Table 4-2: DfT-based vs. non-intrusive testing.

57

Table 4-3: Functional vs. structural testing.

59

Table 4-4: Combinational vs. sequential testing.

60

Table 4-5: Pseudorandom vs. deterministic testing.

62

Table 4-6: Testing vs. diagnosis.

63

Table 4-7: Manufacturing vs. on-line/field testing.

63

Table 4-8: Processor testing methodologies classification.
Table 5-1: Operations of the MIPS ALU.

79
124

Table 5-2: ATPG-based self-test routines test application times (case 1). 132
Table 5-3: ATPG-based self-test routines test application times (case 2). 132
Table 5-4: Characteristics of component self-test routines development. 139

Table 6-1: Parwan processor components. 159
Table 6-2: Self-test program statistics for Parwan. 160
Table 6-3: Fault simulation results for Parwan processor. 160
Table 6-4: Plasma processor components. 161
Table 6-5: Plasma processor synthesis for Design 1. 162
Table 6-6: Plasma processor synthesis for Design II. 162
Table 6-7: Plasma processor synthesis for Design III. 163
Table 6-8: Fault simulation results for the Plasma processor Design . 164

Table 6-9: Self-test routine statistics for Designs II and III of Plasma. 164
Table 6-10: Fault simulation results for Designs II and III of Plasma. _ 165

Table 6-11: Plasma processor synthesis for Design V. 167
Table 6-12: Comparisons between Designs II and IV of Plasma. 167
Table 6-13: Meister/MIPS processor components. 168
Table 6-14: Meister/MIPS processor synthesis. 169
Table 6-15: Self-test routines statistics for Meister/MIPS processor. 170
Table 6-16: Fault simulation results for Meister/MIPS processor. 170
Table 6-17: Jam processor components. 171
Table 6-18: Jam processor synthesis. 172
Table 6-19: Self-test routine statistics for Jam processor. 173
Table 6-20: Fault simulation results for Jam processor. 173
Table 6-21: 0c8051 processor components. 174
Table 6-22: 0¢8051 processor synthesis. 174

X

Table 6-23:
Table 6-24:
Table 6-25:
Table 6-26:
Table 6-27:
Table 6-28:
Table 6-29:
Table 6-30:
Table 6-31
Table 6-32:
Table 6-33:
Table 6-34:
Table 6-35:

List of Tables

Self-test routine statistics for oc8051 processor.
Fault simulation results for oc8051 processor.
RISC-MCU processor components.

RISC-MCU processor synthesis.

Self-test routine statistics for RISC-MCU processor.

Fault simulation results for RISC-MCU processor.
oc54x processor components.

oc54x DSP synthesis.

: Self-test routines statistics for oc54x DSP.

Fault simulation results for oc54x DSP.

Execution times of self-test routines.

Summary of benchmark processor cores.

Summary of application of software-based self-testing.

175

176

176
177
178
178
179
179
180
180
181
182
183

Chapter 1

Introduction
1

1.1 Book Motivation and Objectives

Electronic products are used today in the majority of our daily activities.
Thus, they enabled efficiency, productivity, enjoyment and safety.

The Integrated Circuits (ICs) realized today consist of multiple millions
of logic gates and even more memory cells. They are implemented in, very
deep sub-micron (VDSM) process technologies and often consist of
multiple, pre-designed entities called Intellectual Property (IP) cores. This
design methodology that allowed the integration of embedded IP cores is
known as Embedded Core-Based System-on-Chip (SoC) design
methodology. SoC design flow supported by appropriate Computer Aided
Design (CAD) tools has dramatically improved design productivity and has
opened up new horizons for successful implementation of sophisticated
chips.

An important role in the architecture of complex SoC is played by
embedded processors. Embedded processors and other cores built around
them constitute the basic functional elements of today’s SoCs in embedded
systems. Embedded processors have optimized design (in terms of silicon
area, performance, power consumption, etc), and provide the means for the
integration of sophisticated, flexible, upgradeable and re-configurable
functionality of a complex SoC. In many cases, more than one embedded
Embedded Processor-Based Self-Test

D.Gizopoulos, A.Paschalis, Y.Zorian
© Kluwer Academic Publishers, 2004

2 Chapter 1 - Introduction

processors exist in a SoC, each of which takes over different tasks of the
system and sharing the processing workload.

Issues such as the quality of the final SoC, the reliability of the
manufactured ICs, and the reduced possibility of delivering malfunctioning
chips to the end users, are rapidly getting more importance today with the
increasing criticality of most of electronic systems applications.

In the context of these quality and reliability requirements, complex SoC
designs, realized in dense manufacturing technologies face serious problems
that need special consideration. Manufacturing test of complex chips based
on external Automatic Test Equipment (ATE), as a method to guarantee that
the delivered chips are correctly operating, is becoming less feasible and
more expensive than ever. The volume of test data that must be applied to
each manufactured chip is becoming very large, the test application time is
increasing and the overall manufacturing test cost is becoming the dominant
part of the total chip development cost.

Under these circumstances, which are expected to get worse as circuits
size shrinks and density increases, the effective migration of the
manufacturing test resources from outside of the chip (ATE) to on-chip,
built-in resources and thus the effective replacement of external based
testing with internally executed self-testing is, today the test technology of
choice for all SoCs in practice. Self-testing allows at-speed testing, i.e. test
execution at the actual operating speed of the chip. Thus all physical faults
that cause either timing miss-behavior or an incorrect binary value can be
detected. Also, self-testing drastically reduces test data storage requirements
and test application time, both of which explode when external, ATE-based
testing is used. Therefore, the extensive use of self-testing has a direct
impact on the reduction of the overall chip test cost.

Testing of processors or microprocessors, even when they are not deeply
embedded in a complex system, is known to be a challenging task itself.
Classical testing approaches used in other digital circuits are not adequate to
the carefully optimized processor designs, because they can’t reach the same
efficiency as in other types of digital circuits. Also, self-test approaches,
successfully used to improve the testability of digital circuits, are not very
suitable for processor testing because such techniques usually add overheads
in the processor’s performance, silicon area, pin count and power
consumption. These overheads are often not acceptable for processors which
have been specifically optimized to satisfy very strict area, speed and power
consumption requirements.

This book primarily discusses the special problem of testing and self-
testing of embedded processors in SoC architectures, as well as the problem
of testing and self-testing other cores of the SoC using the embedded
processor as test infrastructure.

