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Preface

In recent years there has been unprecedented popular interest in the chaotic
behaviour of discrete dynamical systems. The ease with which a modest
microcomputer can produce graphics of extraordinary complexity has fired
the interest of mathematically-minded people from pupils in schools to
postgraduate students. At undergraduate level, there is a need to give a basic
account of the computed complexity within a recognized framework of
mathematical theory. In producing this replacement for Ordinary Differential
Equations (ODE) we have responded to this need by extending our treatment
of the qualitative behaviour of differential equations.

This book is aimed at second and third year undergraduate students who
have completed first courses in Calculus of Several Variables and Linear
Algebra. Our approach is to use examples to illustrate the significance of
the results presented. The text is supported by a mix of manageable and
challenging exercises that give readers the opportunity to both consolidate
and develop the ideas they encounter. As in ODE, we wish to highlight the
significance of important theorems, to show how they are used and to
stimulate interest in a deeper understanding of them.

We have retained our earlier introduction and discussion of linear systems
(Chapters 1 and 2). Our treatment of non-linear differential equations has
been extended to include Poincaré maps and phase spaces of dimension
greater than two (Chapters 3 and 4). Applications involving planar phase
spaces (covered in Chapter 4 of ODE) appear in Chapter 5. Problems
involving non-planar phase spaces and families of systems are considered in
Chapter 6, where elementary bifurcation theory is introduced and its
application to chaotic behaviour is examined. Although ordinary differential
equations remain the driving force behind the book, a substantial part of
the new material concerns discrete dynamical systems and the title Ordinary
Differential Equations is no longer appropriate. We have therefore chosen a
new title for the extended text that clarifies its connection with the broader
field of dynamical systems.
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Introduction

In this chapter we illustrate the qualitative approach to differential equations
and introduce some key ideas such as phase portraits and qualitative
equivalence.

1.1 PRELIMINARY IDEAS
1.1.1 Existence and unigueness

Definition 1.1.1
Let X {t, x) be a real-valued function of the real variables ¢ and x, with domain
D = R2. A function x(t), with t in some open interval I = R, which satisfies

X(t)zd—x:X(t,x(t)) (L.1)
dr
is said to be a solution of the differential equation (1.1).

A necessary condition for x(t) to be a solution is that (¢, x(¢))eD for each
tel; so that D limits the domain and range of x(). If x(1), with domain I, is
a solution to (1.1) then so is its restriction to any interval J = I. To prevent
any confusion, we will always take I to be the largest interval for which x(z)
satisfies (1.1). Solutions with this property are called maximal solutions. Thus,
unless otherwise stated, we will use the word ‘solution’ to mean ‘maximal
solution’. Consider the following examples of (1.1) and their solutions; we give

X =X(t,Xx), D, x(1), I
in each case (C and C' are real numbers):

. x=x—t, R% 1+t+Ce¢, R

2. x=x2, R:, (C—t)"!, (—w,0)
0, R
(C—n™'  (C, o)
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3.%=—x/t, {(tX)|t#0}, Cft, (—o0,0)

C'/t, (0,0)
' 0’ (_ w’ C)
_ 172
4. x=2x'"7 {(Lx)|x=0} {(z— Cy, [C )
0, R;

i

x=2xt, R? Ce¢", R;
6. x=—x/tanh t, {(t,x)]t#0}, C/sinht, (—0,0)
C'/sinht, (0, o).
The existence of solutions is determined by the properties of X. The
following proposition is stated without proof (Petrovski, 1966).

Proposition 1.1.1
If X is continuous in an open domain, D' < D, then given any pair (t,, x,)eD’,
there exists a solution x(t), tel, of x= X (t,x) such that t el and x{t,)=Xx,.

For example, consider

£=2)x|, (1.2)
where D = R2. Any pair (£g, xo) With xq > 0 is given by (¢4, x(to)) when x(t) is
the solution

0, te(— o0, C
x(t) = ,  Elmed) (13)
(t—Cy, telC,x)

and C =ty — \/x,. A solution can similarly be found for pairs (9, x) when
xe < 0.

Observe that Proposition 1.1.1 does not exclude the possibility that
x(ty) = xo for more than one solution x(t). For example, for (1.2) infinitely
many solutions x(t) satisfy x(t,) = 0; namely every solution of the form (1.3)
for which C > ¢, and solution x(t) = 0.

The following proposition gives a sufficient condition for each pair in D’
to occur in one and only one solution of (1.1).

Proposition 1.1.2
If X and 6X/0x are continuous in an open domain D' = D, then given any
(to,Xo)ED there exists a unique solution x(ty of X = X (t, x} such that x(t,) = x,.

Notice that, while X = 2|x|*/? is continuous on D(= R?), 0 X/x(=|x|™ /2
for x>0 and —|x| '/? for x <0) is continuous only on D' = {(t,x)|x #0};
it is undefined for x =0. We have already observed that the pair (t,,0), t,eR
occurs in infinitely many solutions of x = 2|x|"/2.

On the other hand, X (t,x) = x —t and dX/0x = 1 are continuous throughout
the domain D = R?. Any (e, o) occurs in one and only one solution of
X = x — t; namely

x(h=1+t+ Ce' (1.4)
when C = (xq—to — 1)e".
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Weaker sufficient conditions for existence and uniqueness do exist (Petrovski,
1966). However, Propositions 1.1.1 and 1.1.2 illustrate the kind of properties
required for X(t, x).

1.1.2 Geometrical representation

A solution x(f) of X = X (¢, x) is represented geometrically by the graph of
x(t). This graph defines a solution curve in the z, x-plane.

If X is continuous in D, then Proposition 1.1.1 implies that the solution
curves fill the region D of the 1, x-plane. This follows because each point in
D must lie on at least one solution curve. The solutions of the differential
equation are, therefore, represented by a family of solution curves in
D (as illustrated in Figs 1.1-1.8).

If both X and dX/0x are continuous in D then Proposition 1.1.2 implies
that there is a unique solution curve passing through every point of D
(as shown in Figs 1.1-1.6).

A

/

5
N

Fig. 1.1. X=x—1. Fig. 1.2. %= —x/t,t #0.
: L/
M NN
&JJJ TN

-

Fig 1.3. x= —t/x. Fig. 1.4, x=1(x2-1)
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Fig 1.5, %=2xt. Fig. 1.6. X = —x/tanht,t#0.
X

Fig. 1.7. x=J(1 —x),|x|< 1. Fig. 1.8. % =2x'2x>0.

Nz

T

~

Observe that the families of solution curves in Figs 1.2 and 1.6 bear a
marked resemblance to one another. Every solution curve in one figure has
a counterpart in the other; they are similar in shape, have the same asymptotes,
etc., but they are not identical curves. The relationship between these two
families of solution curves is an example of what we call qualitative equivalence
(also described in sections 1.3, 2.4 and 3.3). We say that the qualitative
behaviour of the solution curves in Fig. 1.2 is the same as those in Fig. 1.6.

Accurate plots of the solution curves are not always necessary to obtain
their qualitative behaviour; a sketch is often sufficient. We can sometimes
obtain a sketch of the family of solution curves directly from the differential
equation.

Example 1.1.1
Sketch the solution curves of the differential equation
X=t+t/x (1.5)

in the region D of the ¢, x-plane where x # 0.
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Solution
We make the following observations.

1.

The differential equation gives the slope of the solution curves at all points
of the region D. Thus, in particular, the solution curves cross the curve
t + t/x = k, a constant, with slope k. This curve is called the isocline of slope
k. The set of isoclines, obtained by taking different real values for k, is
family of hyperbolae

X=1—0 (1.6)

with asymptotes x = — 1 and t = k. A selection of these isoclines is shown in
Fig. 1.9.
The sign of ¥ determines where in D the solution curves are concave and
convex. If £>0 (<0) then x is increasing (decreasing) with ¢ and the
solution curve is said to be convex (concave). The region D can therefore
be divided into subsets on which the solution curves are either concave
or convex separated by boundaries where X = 0. For (1.5) we find

E=xx 4+ Dx—0x+1) an

and D can be split up into regions P(x > 0) and N(X < 0) as shown in Fig.
1.10.
The isoclines are symmetrically placed relative to t =0 and so there must
also be symmetry of the solution curves. The function X(t,x)=1¢+1t/x
satisfies X(—1t,x)= — X (t,x) and thus if x(z) is a solution to x = X(t, x)
then so is x(— 1) (cf. Exercise 1.5).

These three observations allow us to produce a sketch of the solution

curves for x =t + t/x as in Fig. 1.11. Notice that both X (f,x) =1+ t/x and

k=-3k=-1k=1k=3

- W

LLIXN
LI |

N=O |

NS4

k=0

Fig. 1.9. Selected isoclines for the equation x =t + t/x. The short line segments on

the isoclines have slope k and indicate how the solution curves cross them.
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Fig. 1.10. Regions of convexity (P) and Fig. 1.11. The solution curves of the
concavity (N) for solutions of x =1t +t/x.  differential equation x=r+t/x in the

>

t, x-plane.
0X/éx = —t/x* are continuous on D = {(t,x)|x #0}, so there is a unique
solution curve passing through each point of D. |
It is possible to find the solutions of

X=1+1t/x (1.8)

by separation of the variable (defined in Exercise 1.2). We obtain the equation
x—Injx+ 1] =42 +C, (1.9)

C a constant, for the family of solution curves as well as the solution x(t)= — 1.

However, to sketch the solution curves from (1.9) is less straightforward than
to use (1.8) itself.
The above discussion has introduced two important ideas:

1. that two different differential equations can have solutions that exhibit
the same qualitative behaviour; and
2. that the qualitative behaviour of solutions is determined by X (t, x).

We will now put these two ideas together and illustrate the qualitative
approach to differential equations for the special case of equations of the
form x = X(x). We shall see that such equations can be classified into
qualitatively equivalent types.

1.2 AUTONOMOUS EQUATIONS

1.2.1 Solution curves and the phase portrait
A differential equation of the form

¥=X(x), xeScR, (D=RxS) (1.10)
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is said to be autonomous, because X is determined by x alone and so the
solutions are, as it were, self-governing.

The solutions of autonomous equations have the following important
property. If (¢} is a solution of (1.10) with domain I and range £(I) then
n(t) = ¢&(t+ ), for any real C, is also a solution with the same range, but
with domain {z|t + Cel}. This follows because

At = &t + C) = X (£ + C) = X (n(1). (1.11)

The solution curve x = £(t) is obtained by translating the solution curve
x =n(t) by the amount C in the positive t-direction,

Furthermore if there exists a unique solution curve passing through each
point of strip D' =R x ¢ (I) then all solution curves on D’ are translations
of x = £(t). The domain D is therefore divided into strips where the solution
curves are all obtained by shifting a single curve in the t-direction (as shown
in Figs 1.12-1.15). For example.

%=x (1.12)

' \ N
Fig. 1.12. %= x: strips D’ consist of the Fig. 1.13. x=3(x*—1): strips D' =

half-planes x <0 and x > Q. R x &(I) with E(I)=(— o0, = 1), (—1,1)
and (1, oo).

A

I\

=
\

Fig. 1.14. Solution curves for x=x*  Fig. 1.15. Solution curves for x = x*.
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has solutions:

ey =¢', I=R, &) =1(0, 0) (1.13)
E(n) =0, I=R, &Iy = {0} (1.14)
E()=—¢, I=R, )= (~ o0,0). (1.15)

All the solution curves in the strip D’ defined by xe(0, «0), teR are translations
of ¢'. Similarly, those in D" = {(t, x)| xe(— o0, 0), te R} are translations of —e'.

For families of solution curves related by translations in t, the qualitative
behaviour of the family of solutions is determined by that of any individual
member. The qualitative behaviour of such a sample curve is determined by
X(x). When X(x)#0, then the solution is either increasing or decreasing;
when X (c) =0 there is a solution x(t)=c.

This information can be represented on the x-line rather than the ¢, x-plane.
If X(x)#0 for xe(a,b) then the interval is labelled with an arrow showing
the sense in which x is changing. When X (¢)=0, the solution x(t)=c is
represented by the point x = c. These solutions are called fixed points of the
equation because x remains at ¢ for all . This geometrical representation of
the qualitative behaviour of x = X(x) is called its phase portrait. Some
examples of phase portraits are shown, in relation to X, in Figs 1.16-1.19.
The corresponding families of solution curves are given in Figs 1.12-1.15.

If x is not stationary it must either be increasing or decreasing. Thus for
a given finite number of fixed points there can only be a finite number of
‘different’ phase portraits. By ‘different’, we mean with distinct assignments
of where x is increasing or decreasing. For example, consider a single fixed
point x =¢ (Fig. 1.20). For x < ¢, X(x) must be either positive or negative
and similarly for x > ¢. Hence, one of the four phase portraits shown must
occur. This means that the qualitative behaviour of any autonomous
differential equation with one fixed point must correspond to one of the phase

- » -1 +1

Fig. 1.16. %x=x, x=01is a fixed point.  Fig. 1.17. %=1(x*—1),x= £ 1 are fixed
points.
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X X

*

Fig. 1.18. x=x> x=01is a fixed point. ~ Fig. 1.19. % =x7?, x=01is a fixed point.

Fig. 1.20. The four possible phase portraits associated with a single fixed point. The
fixed point is described as an attractor in (a), a shunt in (b) and (c) and a repellor in (d).

portraits in Fig. 1.20 for some value of ¢. For example, X = x, X = x}, x=x—a,
x = (x — a)?, X = sinh x, x = sinh(x — a) all correspond to Fig. 1.20(d) forc =0
or a. Of course, two different equations, each having one fixed point, that
correspond to the same phase portrait in Fig. 1.20 have the same qualitative
behaviour. We say that two such differential equations are qualitatively
equivalent.

Now observe that the argument leading to Fig. 1.20 holds equally well if
the fixed point at x = ¢ is one of many in a phase portrait. In other words,
the qualitative behaviour of x in the neighbourhood of any fixed point must
be one of those illustrated in Fig. 1.20(a)-(d). We say that this behaviour
determines the nature of the fixed point and use the terminology defined in
the caption to Fig. 1.20 to describe this.

This is an important step because it implies that the phase portrait of any
autonomous equation is determined completely by the nature of its fixed
points. We can make the following definition.



