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FOREWORD

This IMA Volume in Mathematics and its Applications

DISCRETE PROBABILITY AND ALGORITHMS

is based on the proceedings of two workshops, “Probability and Algo-
rithms” and “The Finite Markov Chain Renaissance” that were an integral
part of the 1993-94 IMA program on “Emerging Applications of Probabil-
ity.” We thank David Aldous, Persi Diaconis, Joel Spencer, and J. Michael
Steele for organizing these workshops and for editing the proceedings. We
also take this opportunity to thank the National Science Foundation, the
Air Force Office of Scientific Research, the Army Research Office, and the
National Security Agency, whose financial support made the workshop pos-
sible.

Avner Friedman

Willard Miller, Jr.
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PREFACE

Discrete probability theory and the theory of algorithms have become
close partners over the last ten years, though the roots of the partnership go
back much longer. There are many reasons that underlie the coordination
of these two fields, but some sense of the driving principles can be evoked
by considerations like the following:

e When the use of a rule in an algorithm might lead to locking con-
flicts, randomization often provides a way to avoid stalemate.

e When a combinatorial object cannot be easily constructed, one can
still often show the existence of the object by showing that under
a suitable probability model such an object (or one close enough
for appropriate modification) will exist with positive probability.

e When one needs to make a random uniform selection from an in-
tractably large set, one can sometimes succeed by making clever
use of a random walk (or other Markov chain) that has for its
stationary measure the desired distribution.

¢ Finally, in many large systems that are driven by elements of
chance, one often finds a certain steadiness that can be expressed
by limit laws of probability theory and that can be exploited in
the design of algorithms.

All of the chapters in this volume touch on one or more of these themes.
The method of probabilistic construction is at the heart of the paper by
Spencer and Tetali on Sidon sets as well as that of Godbole, Skipper, and
Sunley, which traces its roots back to one of the first great successes of
the “probabilistic method” — Erdés’s pioneering analysis of the central
Ramsey numbers.

The theme of steadiness in large random structures is evident in almost
all of the volume’s chapters, but it is made explicit in the paper by Fill
and Dobrow on the move-to-front rule for self-organizing lists, the chapter
by Yukich on Euclidean functionals (like the TSP), and in the paper by
Steele that explores the limit theory that has evolved from the Erdds-
Szekeres theorem on monotone subsequences. The chapter by Alon also
shows how to find algorithmically useful “order in chaos” by developing
a basic criterion of network connectivity in random graph models with
unequal probabilities for edges.

The theme of “uniform selection by walking around” is perhaps most
explicitly illustrated in the two chapters by Diaconis and Gangolli and
Diaconis and Holmes. The first of these shows how one can use the ideas of
the “Markov Chain Renaissance” to make progress on the difficult problem
of the enumeration of integer tables with specified row sums and column
sums. The second paper shows how new developments emerging from the
Markov chain renaissance can be brought to bear on problems of concern

Xv



xvi PREFACE

in statistics, computer science, and statistical mechanics. Aldous also
makes a contribution in the thick of the new theory of finite Markov chains
by showing in his chapter that one can simulate an observation from a
chain’s stationary distribution (quickly, though approximately)— all the
while not knowing the transition probabilities of the chain except through
the action of a “take a step from state x” oracle.

The two further chapters in this collection are surveys that call on all
of the basic themes recalled above. They are also tightly tied to the central
concerns of the theory of probabilistic complexity. The first of these 1s
the survey of A. Karlin and P. Raghavan on random walks in undirected
graphs—a notion that is present in many of the collection’s chapters. The
second is the survey by D. Welsh on randomized approximation schemes for
Tutte-Grothendieck invariants, which are remarkable polynomials whose
values at special points give precise information about such basic graph
theoretic problems as the number of connected subgraphs, the number of
forest subgraphs, the number of acyclic orientations, and much more.

All the papers in this volume come from two Workshops, “Probability
and Algorithms” and “The Finite Markov Chain Renaissance,” that were
held during the Special Year in Emerging Applications of Probability at
the Institute for Mathematics and Its Applications at the University of
Minnesota during the fall of 1993. The IMA provided a singularly conge-
nial environment for productive scientific exchange, and with any luck the
chapters of this volume will convey a sense of the excitement that could be
felt in the progress that was reported in these IMA Workshops.

It is a pleasure to thank Avner Friedman, Willard Miller, Jr., and the
IMA staff for their efficient organization of the workshops and the entire
program, and to thank Patricia V. Brick for administering the preparation
of this volume. '

David Aldous
Persi Diaconis
Joel Spencer

J. Michael Steele
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ON SIMULATING A MARKOV CHAIN STATIONARY
DISTRIBUTION WHEN TRANSITION PROBABILITIES
ARE UNKNOWN*

DAVID ALDOUSt

Abstract. We present an algorithm which, given a n-state Markov chain whose
steps can be simulated, outputs a random state whose distribution is within £ of the sta-
tionary distribution, using O(n) space and 0(5_27') time, where 7 is a certain “average
hitting time” parameter of the chain.

1. Introduction. Our topic is a small corner of the region where al-
gorithms and Markov chains meet. While perhaps not relevant to the main
theoretical or practical issues in that region, it seems interesting enough
to be worth recording. My motivation came from a remarkable result of
Asmussen, Glynn and Thorisson [2], restated as Theorem 1 below.

Consider a Markov chain on states {1,2,...,n} with irreducible tran-
sition matrix P = (p(4,7)) and hence with a unique stationary distribu-
tion 7p = (7p(7)). Suppose we have a subroutine that simulates steps
from P, i.e. given any state ¢ as input it outputs a random state .J; with
P(J (i) = j) = p(i,7) Vj, independent of previous output. The problem is
to devise an algorithm which terminates in some random state £ such that,
regardless of P,

(11) Y IPE =) - mplill <.

The point is that the algorithm is not allowed to know P. That is, given
the first s steps (i1, j1), (42, j2), - - -, (%s, js), we must specify a rule by which
we either terminate and output js, or else specify a state 75,41 to be the next
input to the subroutine, and this rule can use only (71, j1, ?2, ja2, . .., js) and
external randomization. Write A(e) for the class of algorithms A which
satisfy (1.1) for all irreducible P (we suppress dependence on n here).
For A € A(e) let ¢(A,P) be the mean number of steps simulated by the
algorithm.
It is obvious that (even for n = 2) there is no algorithm A € A(¢) such
that supp ¢(A4, P) < co, by considering “almost reducible” chains.
Two different methods for attempting to construct algorithms in A(¢e)
suggest themselves.
Matrix perturbation theory gives bounds for TQ ~ TP 1S
terms of bounds for Q — P. Fix some integer m, simu-
late m steps from each state ¢ to get an empirical estimate

* Research supported by N.S.F. Grant DMS92-24857.
t Department of Statistics, University of California, Berkeley, CA 94720.
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2 DAVID ALDOUS

Qm (i, ) of the p(i, j) together with an estimate of the er-
ror Q,, — P. Then calculate numerically the stationary
distribution 7, corresponding to Q,, and a confidence in-
terval for the error m,, — 7. If this interval is too large,
increment m and repeat.

Let’s call this a matriz-based method, in contrast to a pure simulation

method below.
Markov chain theory says that if we simulate the chain
from an arbitrary initial state then at a sufficiently large
time ¢ (randomized to avoid periodicity) the current state
will have approximately distribution 7. So fix ¢, simulate
the chain for ¢ steps, perform some test on the observed
path to check if ¢ is sufficiently large, and if not then in-
crement ¢ and repeat.

It is of course not entirely clear how to turn these vague ideas into
algorithms which are provably in A(¢). Using a rather different idea, As-
mussen et al ([2] Theorem 3.1) showed that in fact one can simulate mp
exactly with no knowledge of P.

THEOREM 1. There ezists an Ag € A(0) with ¢(Ag, P) < oo VP.

Briefly, given a way of simulating exactly the distribution 7 restricted
to B; = {1,2,...,j}, then they describe a procedure to simulate exactly
the distribution 7 restricted to Bj 4.

Unfortunately it seems difficult to give an informative upper bound
for ¢(Ag, P) in terms of P. In section 2 we present and analyze a slightly
simpler “pure simulation” algorithm which does permit a natural upper
bound, at the cost of producing approximate rather than exact stationarity.
Theorem 2 states the precise result. Section 3 gives a lower bound for the
performance of any algorithm, and section 4 contains further discussion.

2. The algorithm. We start by outlining the idea of the algorithm.
Write E;T; for the mean hitting time on state j, starting from state i.
Define the averaged hitting time 7 = 7p by

(2.1) =YY w(i)ETin(j).
i

Because 7 is essentially an upper bound on the time taken to approach
stationarity, it is enough to be able to estimate the value of 7 by simulation
in O(7) steps, for then we can run another simulation for O(r) steps and
output the final state. The estimation of 7 is done via a “coalescing paths”
routine: run the chain from an arbitrary start until a specified state j is hit,
keeping track of states visited; start again from some unvisited state and
run until visiting some state hit on a previous run; and so on until every
state has been visited. Then the number of steps used in this procedure is
©(7), for a typical initial target j.

Here is the precise algorithm. We are given ¢ > 0, states {1,...,n},



SIMULATING STATIONARY DISTRIBUTION 3

and the ability to simulate a step of the Markov chain from any specified
state.

Algorithm A,
1. Let tg — n.
2. Pick U random, uniform on {1,...,%0}.
3. Simulate the chain, starting at state 1, for U steps. Let j be the final
state.
4. Start a counter at 0 and count steps as they are simulated in the stages
below. If the count exceeds ety before this algorithm starts stage 8, let
to — 2tp and go to stage 2.
5. Let B — {j}.
6. Simulate the chain, starting at state min{i : i ¢ B}, until the chain hits
B, keeping track of the set B’ of states visited.
7. Let B— BUB'. If B#{1,...,n} go to stage 6.
8. Pick U random, uniformon {1, ..., [tp/e]}. Simulate the chain, starting
at state 1, for U steps. Output the final state &.

Stages 5,6,7 are the “coalescing walks” routine. It is clear that the
algorithm requires only O(n) space, to track which states are hit during
this routine.

THEOREM 2. Fiz 0 < e < 1/4. Then A, € A(4e) and

8lmp
£2

(A, P) < VP,

One might guess that some variation of the construction would lead
to an algorithm where the bound is polynomial in log 1/¢, but I have not
pursued that possibility.

The rest of the section contains the proof of Theorem 2. To start with
some notation, write || || for variation distance between distributions

10— sll = 5 37166 = (i)

Write
s(j) = max /T,

s« = mins(j).
%

Write C; for the “coalescing paths” time, that is the number of steps re-
quired to complete stages 5,6,7 of the algorithm, ignoring the cut-off rule
in 4. Finally, recall two standard facts: the right-averaging principle ([1]
Chapter 2)

(2.2) ZE,T,— m(j) =71 Vi



