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Preface

This volume contains the papers presented at the Sixth International Conference on
Energy Minimization Methods on Computer Vision and Pattern Recognition
(EMMCVPR 2007), held at the Lotus Hill Institute, Ezhou, Hubei, China, August
27-29, 2007. The motivation for this conference is the realization that many problems
in computer vision and pattern recognition can be formulated in terms of probabilistic
inference or optimization of energy functions. EMMCVPR 2007 addressed the critical
issues of representation, learning, and inference. Important new themes include prob-
abilistic grammars, image parsing, and the use of datasets with ground-truth to act as
benchmarks for evaluating algorithms and as a way to train learning algorithms. Other
themes include the development of efficient inference algorithms using advanced
techniques from statistics, computer science, and applied mathematics.

We received 140 submissions for this workshop. Each paper was reviewed by three
committee members. Based on these reviews we selected 22 papers for oral presenta-
tion and 15 papers for poster presentation. This book makes no distinction between
oral and poster papers. We have organized these papers in seven sections on algo-
rithms, applications, image parsing, image processing, motion, shape, and three-
dimensional processing.

Finally, we thank those people who helped make this workshop happen. We ac-
knowledge the Program Committee for their help in reviewing the papers. We are
grateful to Kent Shi and Jose Hales-Garcia for their help with organizing Web pages
and dealing with the mechanics of collecting reviews, organizing registration, and so
no. We also thank Mrs. Wenhau Xia at Lotus Hill Institute for her assistance. We are
very grateful to Alfred Hofmann at Springer for agreeing to publish this volume in the
Lecture Notes in Computer Science series.

June 2007 Alan Yuille
Song-Chun Zhu
Daniel Cremers
Yongtian Wang
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An Effective Multi-level Algorithm Based on
Simulated Annealing for Bisecting Graph

Lingyu Sun' and Ming Leng?

! Department of Computer Science,
Jinggangshan College, Ji’an, PR China 343009
2 School of Computer Engineering and Science,

Shanghai University, Shanghai, PR China 200072
sunlingyu@jgsu.edu.cn,lengming@shu.edu.cn

Abstract. Partitioning is a fundamental problem in diverse fields of
study such as knowledge discovery, data mining, image segmentation and
grouping. The min-cut bipartitioning problem is a fundamental graph
partitioning problem and is NP-Complete. In this paper, we present an
effective multi-level algorithm based on simulated annealing for bisect-
ing graph. The success of our algorithm relies on exploiting both the
simulated annealing procedure and the concept of the graph core. Our
experimental evaluations on 18 different graphs show that our algorithm
produces encouraging solutions compared with those produced by MeTiS
that is a state-of-the-art partitioner in the literature.

1 Introduction

Partitioning is a fundamental problem with extensive applications to many areas
using a graph model, including VLSI design [1], knowledge discovery [2], data
mining [3],[4], image segmentation and grouping [5],(6]. For example, inspired by
spectral graph theory, Shi and Malik [6] formulate visual grouping as a graph
partitioning problem. The nodes of the graph are image pixels. The edges be-
tween two nodes correspond to the strength with which these two nodes belong
to one group. In image segmentation, the weights on the edges of the graph
corresponds to how much two pixels agree in brightness, color, etc. Intuitively,
the criterion for partitioning the graph will be to minimize the sum of weights of
connections across the groups and maximize the sum of weights of connections
within the groups. The min-cut bipartitioning problem is a fundamental parti-
tioning problem and is NP-Complete [7]. The survey by Alpert and Kahng [1]
provides a detailed description and comparison of various such schemes which
can be classified as move-based approaches, geometric representations, combina-
torial formulations, and clustering approaches.

Most existing partitioning algorithms are heuristics in nature and they seek
to obtain reasonably good solutions in a reasonable amount of time. Kernighan
and Lin (KL) [8] proposed a heuristic algorithm for partitioning graphs. The
KL algorithm is an iterative improvement algorithm that consists of making
several improvement passes. It starts with an initial bipartitioning and tries to

A.L. Yuille et al. (Eds.): EMMCVPR 2007, LNCS 4679, pp. 1-12, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 L. Sun and M. Leng

improve it by every pass. A pass consists of the identification of two subsets of
vertices, one from each part such that can lead to an improved partitioning if
the vertices in the two subsets switch sides. Fiduccia and Mattheyses (FM) [9]
proposed a fast heuristic algorithm for bisecting a weighted graph by introducing
the concept of cell gain into the KL algorithm. These algorithms belong to the
class of move-based approaches in which the solution is built iteratively from an
initial solution by applying a move or transformation to the current solution.
Move-based approaches are the most frequently combined with stochastic hill-
descending algorithms such as those based on Tabu Search[10],[11], Genetic Algo-
rithms [12], Neural Networks [13], Ant Colony Optimization[14], Particle Swarm
Optimization[15], Swarm Intelligence([16] etc., which allow movements towards
solutions worse than the current one in order to escape from local minima.

As the problem sizes reach new levels of complexity, a new class of graph
partitioning algorithms have been developed that are based on the multi-level
paradigm. The multi-level graph partitioning schemes consist of three phases
[17],[18],[19]. The coarsening phase is to reduce the size of the graph by collaps-
ing vertex and edge until its size is smaller than a given threshold. The initial
partitioning phase is to compute initial partition of the coarsest graph. The un-
coarsening phase is to project successively the partition of the smaller graph back
to the next level finer graph while applying an iterative refinement algorithm.

In this paper, we present a multi-level algorithm which integrates a new sim-
ulated annealing-based refinement approach and an effective matching-based
coarsening scheme. Our work is motivated by the multi-level refined mixed sim-
ulated annealing and tabu search algorithm(MLrMSATS) of Gil which can be
considered as a hybrid heuristic with additional elements of a tabu search in a
simulated annealing algorithm for refining the partitioning in [20] and Karypis
who introduces the concept of the graph core for coarsening the graph in [19] and
supplies MeTiS [17], distributed as open source software package for partition-
ing unstructured graphs. We test our algorithm on 18 graphs that are converted
from the hypergraphs of the ISPD98 benchmark suite [21]. Our comparative ex-
periments show that our algorithm produces excellent partitions that are better
than those produced by MeTiS in a reasonable time.

The rest of the paper is organized as follows. Section 2 provides some defini-
tions and describes the notation used throughout the paper. Section 3 describes
the motivation behind our algorithm. Section 4 presents an effective multi-level
simulated annealing refinement algorithm. Section 5 experimentally evaluates
our algorithm and compares it with MeTiS. Finally, Section 6 provides some
concluding remarks and indicates the directions for further research.

2 Mathematical Description

A graph G=(V,E) consists of a set of vertices V and a set of edges E such that
each edge is a subset of two vertices in V. Throughout this paper, n and m denote
the number of vertices and edges respectively. The vertices are numbered from 1
to n and each vertex v € V has an integer weight S(v). The edges are numbered
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from 1 to m and each edge e € FE has an integer weight W (e). A decomposition
of a graph V into two disjoint subsets V! and V2, such that V! U V?=V and

VINV?2=g, is called a bipartitioning of V. Let S(A)=)_ S(v) denotes the size
vEA
of a subset A C V. Let ID, be denoted as v’s internal degree and is equal to

the sum of the edge-weights of the adjacent vertices of v that are in the same
side of the partitioning as v, and v’s external degree denoted by ED,, is equal to
the sum of edge-weights of the adjacent vertices of v that are in different sides.
The cut of a bipartitioning P={V1,V?} is the sum of weights of edges which
contain two vertices in V! and V? respectively. Naturally, vertex v belongs at

the boundary if and only if ED, > 0 and the cut of P is also equal to 0.5 Y ED,,.
veV

Given a balance constraint b, the min-cut bipartitioning problem seeks a solution
P={V1,V?} that minimizes cut(P) subject to (1-b)S(V)/2 < S(V1),S(V?) <
(1+b6)S(V)/2. A bipartitioning is bisection if b is as small as possible. The task
of minimizing cut(P) can be considered as the objective and the requirement that
solution P will be of the same size can be considered as the constraint.

3 Motivation

Simulated annealing belongs to the probabilistic and iterative class of algorithms.
It is a combinatorial optimization technique that is analogous to the annealing
process used for metals [22]. The metal is heated to a very high temperature,
so the atoms gain enough energy to break chemical bonds and become free to
move. The metal is then carefully cooled down so that its atoms crystallize into
high ordered state. In simulated annealing, the combinatorial optimization cost
function is analogous to the energy E(s) of a system in state s which must be
minimized to achieve a stable system.

The main idea of simulated annealing is as follows: Starting from an initial
configuration, different configurations of the system states are generated at ran-
dom. A perturbation of a system state consists of reconfiguring the system from
its current state to a next state within a neighborhood of the solution space. The
change in energy cost between the two configurations is determined and used to
compute the probability p of the system moving from the present state to the
next. The probability p is given by exp( —%E), where AFE is the increase in the
energy cost and T is the temperature of the system. If AF is negative, then
the change in state is always accepted. If not, then a random number r between
0 and 1 is generated and the new state of the system is accepted if r < p, else
the system is returned to its original state. Initially, the temperature is high
meaning that a large number of perturbations are accepted. The temperature is
reduced gradually according to a cooling schedule, while allowing the system to
reach equilibrium at each temperature through the cooling process.

In [23], Gil proposed the refinement of mixed simulated annealing and tabu
search algorithm(RMSATS) that allows the search process to escape from local
minima by the simulated annealing procedure, while simultaneously the occur-
rence of cycles is prevented by a simple tabu search strategy. At each iteration of
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RMSATS, the hybrid heuristic strategy is used to obtain a new partitioning s in
the neighbourhood, N (s), of the current partitioning s through moving vertex
v to the other side of the partitioning s. Every feasible partitioning, 5 € N(s),
is evaluated according to the cost function ¢(3) to be optimized, thus deter-
mining a change in the value of the cost function, ¢(3) — ¢(s). The problem
with local search techniques and hill climbing is that the searching may stop
at local optimum. In order to overcome this drawback and reach the global op-
timum, RMSATS must sometimes accept the worse partitioning to jump out
from a local optimum. Therefore, admissible moves are applied to the current
partitioning allowing transitions that increase the cost function as in simulated
annealing. When a move increasing the cost function is accepted, the reverse
move should be forbidden during some iterations in order to avoid cycling, as in
tabu search. In [20], Gil presents the MLrMSATS approach that is enhancement
of the RMSATS algorithm with the multi-level paradigm and uses the RMSATS
algorithm during the uncoarsening and refinement phase to improve the quality
of the finer graph G(V),E;) partitioning Pg,={ Vi, Vf} which is projected from
the partitioning Pg,,,={V}}1, V2, }of the coarser graph Giy1(Vig1,Ei41)-

In this paper, we present a new multi-level simulated annealing refinement
algorithm(MLSAR) that combines the simulated annealing procedure with a
boundary refinement policy. It has distinguishing features which are different
from the MLrMSATS algorithm. First, MLSAR introduces the conception of
move-direction to maintain the balance constraint of a new partitioning 5. Sec-
ond, MLSAR defines ¢(3)=cut(3) and exploits the concept of gain to fast the
computation of ¢(3) — ¢(s) that is computed by ED(v)-ID(v), where the vertex
v is chosen to move to the other side of the partitioning s. MLSAR also uses two
buckets with the last-in first-out (LIFO) scheme to fast storage and update the
gains of boundary vertices of two sides and facilitate retrieval the highest-gain
vertex. Finally, MLSAR doesn’t select vertex v to move at random in boundary
vertices as in MLrMSATS, but always chooses to move a highest-gain vertex v
from the larger side of the partitioning. It is important for simulated annealing
to strengthen its effectiveness and achieve significant speedups for high quality
solutions with well-designed heuristics and properly move generation strategy.

In [17], Karypis presents the sorted heavy-edge matching (SHEM) algorithm
that identifies and collapses together groups of vertices that are highly connected.
Firstly, SHEM sorts the vertices of the graph ascendingly based on the degree
of the vertices. Next, the vertices are visited in this order and SHEM matches
the vertex v with unmatched vertex u such that the weight of the edge W (v,u)
is maximum over all incident edges. In [19], Amine and Karypis introduce the
concept of the graph core for coarsening the power-law graphs. In [11], Leng
and Yu present the core-sorted heavy-edge matching (CSHEM) algorithm that
combines the concept of the graph core with the SHEM scheme. Firstly, CSHEM
sorts the vertices of the graph descendingly based on the core number of the
vertices by the algorithm in [24]. Next, the vertices are visited in this order and
CSHEM matches the vertex v with its unmatched neighboring vertex whose
edge-weight is maximum.
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In our multi-level algorithm, we adopt the MLSAR algorithm during the re-
finement phase and an effective matching-based coarsening scheme during the
coarsening phase that uses the CSHEM algorithm on the original graph and
the SHEM algorithm on the coarser graphs. The pseudocode of our multi-level
algorithm is shown in Algorithm 1.

Algorithm 1 (our multi-level algorithm)

INPUT: original graph G(V,E)
OUTPUT: the partitioning P¢ of graph G
/*coarsening phase™*/

I=0

Gi(Vi,E1)=G(V,E)
Gi1(Vig1,E141)=CSHEM(G,( Vi, E))
While (| V41| > 20) do

I=1+1

Gi+1(Vi41,Bi41)=SHEM(G\( V1, E))

End While
/*initial partitioning phase™/
P, =GGGP(G))
/*refinement phase*/
While (1> 1) do

P, =MLSAR(G,Pg,)

Project P/G, to Pg,_,;

=1-1
End While
Pc=MLSAR(G|,Pg,)
Return Pg

4 An Effective Multi-level Simulated Annealing
Refinement Algorithm

Informally, the MLSAR algorithm works as follows: At cycle zero, an initializa-
tion phase takes place during which the initial partitioning @ is projected from
the partitioning Pg,,, of the coarser graph Gjyi, the Markov chain length L
is set to be the number of vertices of the current level graph Gj, the internal
and external degrees of all vertices are computed and etc. The main structure of
MLSAR consists of a nested loop. The outer loop detects the frozen condition by
an appropriate termination criterion whether the current temperature T} is less
than final temperature; the inner loop determines whether a thermal equilibrium
at temperature T} is reached by using the following criterions: The number of
attempted moves exceeds L, or the bucket of the start side of the move-direction
is empty. In the inner loop of the MLSAR algorithm, a neighbor of the current
partitioning P is generated by selecting the vertex v with the highest gain from
the larger side of the partitioning P and performing the move according to the
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following rule: The move is certainly accepted if it improves cut(P), or proba-
bilistically accepted according to a random number uniformly distributed on the
interval [0,1]. In the latter case, if the acceptance test is negative then no move
is performed, and the current partitioning P is left unchanged. The pseudocode

of MLSAR is shown in Algorithm 2. The cycles counter is denoted by & and
L represents the Markov chain length. Let Best be the best partitioning seen
so far and P be the current partitioning. At cycle k, Ty represents the current

temperature and the counter of neighbors sampled is denoted by L.
Algorithm 2 (MLSAR)

INPUT: initial bipartitioning @),balance constraint b,attenuation rate «
initial temperature T;,final temperature T’
OUTPUT: the best partitioning Best, cut of the best partitioning cut(Best)
MLSAR(
/* Initialization™ /
k=0
Ty =T,
Set current parition P = @)
Set the best parition Best = @)
Set Markov chain length L=|V|;
For every vertex v in G = (V, E) do

ID, = > W (v,u)
(v,u) EEAP[v|=P][u]
ED, = > W (v,u)

(v,u) EEAP[v]#P[u]
Store v in boundary hash-table if and only if ED, > 0,
End For
/*Main loop*/
While Ty > T do
Ly=1
Compute the gains of boundary vertices of two sides;
Insert the gains of boundary vertices of two sides in buckets respectively;
While L < L do
Decide the move-direction of the current move;
If (the bucket of the start side of the move-direction is empty) then
Break;
Else
Select the vertex v with the highest gain in the bucket;
Designate the vertex v as tabu status by inserting v in tabu list;
If (random(0,1) < min(1, exp( (ED"-ID”%ichu"t?g‘;irgkha"’h'table| ))) then
Ly=Li+1
Update P by moving the vertex v to the other side;
original cut Minus its original gain as the cut of new partition P;
Update the internal and external degrees of its neighboring vertices;
Update the gains of its neighboring vertices in two buckets;

Update boundary status of its neighboring vertices in boundary hash-table;
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If (the cut is minimum and satisfies balance constraint b) then
Best=P
Record roll back point;
Record new cut minumum;
End If /* cut is minimum™/
End If /* r < p*/
End If /* the bucket is empty*/
End While /* thermal equilibrium Ly < L*/
Roll back to minumum cut point by undoing all moves and updating the
internal and external degrees and boundary hash-table;
Empty the tabu list and two buckets;
T(Ic+1) =a X Tk
k=k+1
End While /* frozen criterion Ty > T¢*/
Return Best and cut(Best)

The MLSAR algorithm uses a tabu list, which is a short-term memory of
moves that are forbidden to execute, to avoid cycling near local optimum and
to enable moves towards worse solutions, as in the MLrMSATS algorithm. In
the terminology of tabu search [25], the MLSAR strategy is a simple form of
tabu restriction without aspiration criterion whose prohibition period is fixed
at | V;|. Because the MLSAR algorithm aggressively selects the best admissible
vertex based on the tabu restriction, it must examine and compare a number of
boundary vertices by the bucket that allows to storage, retrieval and update the
gains of vertices very quickly. It is important to obtain the efficiency of MLSAR
by using the bucket with the LIFO scheme, as tabu search memory structure.
The internal and external degrees of all vertices, as complementary tabu search
memory structures, help MLSAR to facilitate computation of vertex gain and
judgement of boundary vertex. We also use a boundary hash-table, as another
complementary tabu search memory structure, to store the boundary vertices
whose ezternal degree is greater than zero.

During each iteration of MLSAR, the internal and external degrees and gains
of all vertices are kept consistent with respect to the current partitioning P.
This can be done by updating the degrees and gains of the vertex v’s neigh-
boring vertices. Of course, the boundary hash-table might change as the current
partitioning P changes. For example, due to a move in an other boundary vertex,
a boundary vertex would no longer be such a boundary vertex and should be
removed from the boundary hash-table. Furthermore, a no-boundary vertex can
become such a vertex if it is connected to a boundary vertex which is moved to
the other side and should be inserted in the boundary hash-table.

5 Experimental Results

We use the 18 graphs in our experiments that are converted from the hypergraphs
of the ISPD98 benchmark suite [21] and range from 12,752 to 210,613 vertices.



