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FOREWORD

This volume contains papers presented in the Symposium on Adaptive and Learning Control
held at the 1990 Winter Annual Meeting of The American Society of Mechanical Engineers {ASME).
This symposium was held in Dallas, Texas on November 25-30, 1990. The symposium and the
editing of this volume were sponsored by the Adaptive and Optimal Control Technical Panel of the
Dynamic Systems and Control Division of the ASME.

The collection of papers that are presented here cover a wide spectrum of theoretical as well as
application oriented issues of interest in the areas of adaptive, repetitive and learning control. The
symposium is comprised of two technical sessions:

(1) Applied Adaptive Control, and
(2) Repetitive and Learning Control.

The papers in the first session cover subject matters such as adaptive gontrol of two axis motion
control systems, experimental investigation of adaptive and nen-adantive tracking controllers, gain
scheduling technique, self tuning control of disk file servos,and tint€ delay control systems. The
subjects covered in the second session .include learning control of robot manipulators, adaptive
run-out correction system for disk drives, multivariable repetitive control, and intelligent control of
systems with unknown dynamics. ,

I wouid like to thank all of the authors and the referees to whom much of the credit for success
of this symposium is due. | would also like to thank Amy Tomasko of the Georgia Institute of

_Technology and Stacy Lambert of the University of Michigan for their invaluable secretarial assist-
ance in putting all this together.

" Nader Sadegh
Georgia Institute of Technology
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SYNCHRONIZATION OF TWO MOTION CONTROL AXES
UNDER ADAPTIVE FEEDFORWARD CONTROL

Masayoshi Tomizuka, Jwu-Sheng Hu, and Tsu-Chih Chiu
Department of Mechanical Engineering
University of California
Berkeley, California

Takuya Kamano
Department of Electrical Engineering
The University of Tokushima
Tokushima, Japan

ABSTRACT

In this paper, motion synchronization of two DC motors, or
motion control axes, under adaptive feedforward control is
considered. The adaptive feedforward control system for each
axis consists of a proportional feedback controller, an adaptive
disturbance compensator and an adaptive feedforward controller.
If the two adaptive systems are left uncoupled, a disturbance
input applied to one of the two axes will cause a motion error
in the disturbed axis only, and the error becomes the
synchronization error.  To achieve a better synchronization, a
coupling controller, which responds to the ' synchronization error,
ie. the difference between the two motion errors, is introduced.
In this case, when a disturbance input is applied to one axis,
the motion eirors appear in the undisturbed axis as well as 'in
the disturbed axis. The motion error in the undisturbed axis is
induced by the coupling controller and adaptive feedforward
controller. The adaptive synchronizing problem is formulated and
analyzed in the continuous time domain first, and then in the
discrete tme domain. Stability conditions are  obtained.
Effectiveness  of the adaptive synchronizing controller  is
demonstrated by simulation.

INTRODUCTION

One fundamental problem in motion control systems is that a
mulriple number of motion axes or motors must be controlled in a
synchronous manner. For example, in control of machine tools, a
poor synchronization of relevant motion control axes results in
diminished dimensional accuracy of the workpiece or even in
unusable products. Synchronization can be achieved by either the
“"equal-status" approach or "master-slave" approach (Uchiyama and
Nakamura, 1988). In the equal-status approach, the synchronizing
controller treats multiple axes in a similar manner without
favoring one axis over the other. When the dynamics are
significantly ~ different among multiple axes, the equal-status
approach may not be the best because the synchronization speed of
the overall system is set by the slowest axis. In a two-axes
problem with significantly different dynamics between the two
axes, it will make more sense to take the master-slave approach.
In this case, the slow axis is under conventional servo control
and acts as the master for the fast axis. The fast axis is the
slave and follows the slow axis. In this paper, synchronization
will be considered from the equal-status viewpoints. Other

issues, which must be taken into consideration, are: 1.
dynamics of motion axes may depend on operating conditions, and
2. motion axes must be synchronized during transient as well as
at steady state.  These issues are difficult to handle within a
frame  work of conventional feedback control theory. The
objective of this paper is to explore the synchronization problem
from the viewpoint of adaptive control: ~ in particular, speed
synchronization of two DC motors under adaptive feedforward
control is considered. \

In the next section, we first introduce an adaptive scheme
for a one axis system, which consists of a proportional feedback
controller, an adaptive disturbance compensator and an adaptive
feedforward controller.  For two axes systems, we introduce a
coupling controller in addition to the adaptive feedforward
controller for each axis. The coupling controller responds  to
the synchronization error, i.e. the difference between the two
motion errors. This idea is similar to the one suggested by
Koren (1980) for two axes contouring systems. The
synchronization error is used as the adaptation error signal in
the two adaptive feedforward controllers.  The stability of this
adaptive synchronizing system is analyzed. Simulation results
will be shown to demonstrate the effectiveness of synchronizing
control. In Section 3, we formulate the problem as a discrete
time control problem and analyze its stability.  Simulation will
be repeated and compared with the continuous time case.
Motivation for discrete time formulation is implementation by
using a digital computer. Conclusions and future research
directions will be described in Section 4.

ADAPTIVE SYNCHRONIZING CONTROL
— CONTINUOUS TIME CASE

Adaptive Feedforward Control

Feedforward control is . effective in tracking the time
varying desired output signal (e.g. Tomizuka, 1989). However
tracking performance under feedforward controllers depends on the
accuracy of a plant model utilized in the design. When dynamic
parameters such as viscous and Coulomb friction coefficients and
inertia are subject to change, they must be estimated in real
time and the feedforward controller must be adjusted accordingly.
In this section, we consider an adaptive feedforward control
approach and its use in a two-axes synchronizing problem. The
adaptive feedforward control “scheme is for regulation and



Fig. 1

Adaptive Feedforward Control System
( Continuous Time )

tracking control of motor speed, and the overall system is as
sketched in Fig. 1.- The motor dynamics is described by

G(s)=b/(s +2), a>0 andb>0 1)

where the plant parameters a and b are not precisely known or
subject to change. Typically, a and b depend on inertia load as
well as viscous friction force. As shown in Fig. 1, the input to
the motor is

u(®) =k e(t) +u (1) )

where k is a fixed proportional control gain. u(t) is the
feedforward control input defined by .

ug(® = ¥ 0w 0) + ¥ ({de (ty/dt) + LAG 3)

where md(t) is the desired output, ® (t) and dmd(t)/dt are both
bounded, and v, is a constant. The first two terths represent the
adaptive feedforward control action for the desired output, and
the third term ' represents that for the disturbance input.
@,(1)’s are adjusted by the adaptation law,

4@ (t/dt = y @ (t)e(t)
W, (0/de = y(dw (1)/dt)e(t) @)
dW,(1/dt =y e(t)
where v is a positive adaptation gain.
By defining,
ORI CACRACRAO)!
and
o7 =[0,0) dw,w/dt v],
the adaptation law can be written as
dBoy/de =y o(t) e(t) O

Under the assumption that the nonadaptive feedback control
loop consisting of the plant and proportional controller remains
asymptotically stable, the disturbance (d) is constant, and the
desired output and its derivative are bounded, it can be shown
that the overall adaptive system is stable and the tracking error
converges to zero asymptotically (see Appendix A for details).
Notice that when the error is zero, i.e. e(t) = 0, the motor is
purely under feedforward control.

If we apply this adaptive feedforward controller to each
axis control in a two axes problem, the overall system becomes as
shown in Fig. 2. The adaption law for each axis is

dB(/dt=vo M e(®); i=1or2

For a step disturbance input applied to the second axis, the

system responds as shown in Fig. 3. Notice that the error of the

undisturbed axis remains zero, and the two axes are
unsynchronized during the recovery process of the disturbed axis.

wa()

Wd2(t)

Fig. 2 Adaptive Feedforward Control for Two AXxes System
( Continuous Time )
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Fig. 3 Responses of Two Axes System to Step Disturbance
( Independent Adaptive Feedforward Control )

Synchronization of Tﬁo Motion Control Axes

To achieve a better synchronization,

; we measure the
differential error,

&) =e,(1) - e,(t) ©)

and modify the overall control structure in Fig. 2 to the one in
Fig. 4. Notice that the additional coupling controller increases
an effective loop gain for each axis. The parameter adaptation

law is modified to
dB, (1/dt =y 0,(0) [e, (1) + Bev)] ™
dB,0/dt =7 0,01 [e,(t) - Pe(®) : @®)

where the adaptation gain 7 is any positive number and the
positive coupling parameter 8 must be selected so that

a/b, +(1+Bk, -(1/2)B(k, +k )
(1/2)Bk,, +k_,) a/b, + (1 + Bk,
is positive definite )

In particular, if two axes possess identical dynamics, ie. a, =
a,b = b, and k, = k., B can take any positive value.



Fig. 4 Synchronized Adaptive Feedforward Control for
Two Axes System ( Continuous Time )

Notice that the synchronization error, €, drives the two
parameter vectors, l(t) and 2(t), in opposite directions, which
results in faster removal of thé synchronization error. Fig..' 5
shows the results of simulation of this adaptive synchronizing
system when a step disturbance input is applied to ~the second
axis. Notice that the errors appear both in the first and second
axes but that the synchronization error is quickly removed. As
shown in Fig. 6, the synchronization error is significantly
reduced as the coupling parameter in the controller, B, "is
increased.  The stability proof for this adaptive synchronizing
control system is similar to but more tedious than that of the

single axis adaptive feedforward control system (see Appendix B
for details).

ADAPTIVE SYNCHRONIZING CONTROL
— DISCRETE TIME CASE

The adaptive synchronizing control scheme presented in the
previos section is a continucus time scheme. Since the
implementation of a continuous time controller requires analog
devices and is usually inconvenient, it is of practical interest
to implement the control algorithm using digital computers. In
the digital implementation, the stability conditions are in
general dirrerent from those for the continuous time system
because of the sampling effect. In this section, we will
consider a discrete time formulation of motion synchronization.
A sufficient condition that guarantees the stability of the
discrete time problem is presented.

Adaptive Feedforward Control

. When the first order system of Eq. (1) is under digital control,
the input-output discrete time transfer function model is

G@) =b/(z-a) (10)

where a, and b , are related to the parameters of the continuous
time modél by

a, = e T, b . = (b/a)(1-e*T), and T = sampling period
Notice that the plant parameters satisfy
0<ad<1 and b, >0

The overall control system is configured as shown in Fig. 7.
The proportional feedback control gain is selected so that

With Synchronization ( Continuous Time ) (Beta=10)
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Fig. 5 Responses of Two Axes System to Step Disturbance
( Synchronized Adaptive Feedforward Control )
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Fig. 6 Effect of Coupling Parameter (8) on Synchronization
Error ( Continuous TIme )
0<ad-bdkc<ad, kc>0
The feedforward control input is
A A~ : A~
u (k) = LA (k) + wl(k)(n (k+1) + wz(k)vc

= 8007k an
where
800" = [¥,00 00 ¥,00)
and
o) = [0,() @,k+1) v],
The parameter adaptation algorithm is
800 =8c-1) +70(k-1) e(®) 1 (12)
where v is selected so that
(/2)lipC-DIF = (92)¢7 (k-1)p(k-1) < (1/b (1 - (ad‘- bk )] (13

Notice that Eq. (13) limits the value of the adaptation gain. In
the continuous time case, Yy was any positive number. The



stability proof of the discrete time adapdve feedforward control
system is given in Appendix C.

Synchronization of Two Motion Control Axes

The structure of the discrete time adaptive synchronizing
control system is analogous to that of the continuous time
counterpart and is depicted in Fig. 8. The synchronization error is

e(k) = e, (k) - ,(k) (14)
The parameter adaptation law is
B0 =k +yokDle®+pe® - (5
0,00 =B, (k-1) + ¥ 0,(-1) [e,(K) - BeCk)] (16)

where B and Y must be selected so that the following condition is
satisfied.

[A_ - A,z'T" is strictly positive real (17)
where
piid (/b,; - K(1+B) X8
_ KB (1/b,,) - K(1+B)

(adl'/bdl) -k, (1+B) k,B
kP (/b)) - k,(1+B)

cl

> -~
) r.ﬂ‘)l
o

Wycky + § _r ;

Fig. 7 Adaptive Feedforward Control System
( Discrete Time )

Waito "

Uatk) +

dz

Fig. 8 Synmchronized Adaptive Feedforward Control for
Two Axes System ( Discrete Time )

: LK)
z-Cg

pe
o L

and 4
K = max, (/20" ()0(6) s S8

In the discrete time simulation, we discretize the
continuous case plant preceded by a zero order hold. The
proportional gain remains the same but the parameter adaptation
gain is adjusted according to the sampling rate. Fig. 9 shows
the results of simuladon of the discrete time adaptive
synchtonizing systemn when a step disturbance input is applied to
the second axis. § = O corresponds to the uncoupled case. Notice
that in Fig. 10, with synchronization, the first axis actually
goes down to meet the second axis and reduce the synchronization
error. Fig. 11 shows the synchronization error is reduced as
increases. While the mansient of the continuous time case in
the previous section was smooth, the transient under discrete
time control depends on the sampling rate and the parameter .
When the sampling time is small ( relative to the system time
constant ), in this case, 2 msec, we can increase B to a least 10
and achieve similar performance as in the continuous time case.
If the sampling time is large, e.g. 10 msec, we can only increase
B to around 3. As shown in Fig. 12 to 14, for { larger than 3
the ransient becomes oscillatory and near instability as P is
closer to 4. : .

52

Without Sunchronization ( Discrete Time ) { Beta=0)

Yi

4.6+ : 4

Velocity

44t B

42 i 7R X2

Sk 0.2 04 0.6 0.8 1 122,

Time ( sec )( Sampling Time = 2 msec )

Fig. 9 Responses of Two Axes System to Step Disturbance
(Independent Adaptive Feedforward Control — Discrete Time)

‘Wit Sunchronization ( Discrete Time ) (Beta = 10 )
51 - -

b J
b,
=
143
S
i 4
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Y2 4
as5- Y B
4'40 : 0.2 0.4 06 c8 1 12
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Fig.10 Responses of Two Axes System to Step Disturbance )
(Synchronized Adaptive Feedforward Control — Discrete Time)



Synchronization Exror ( Discrete Time )} Beta=0,0.5,1, 5, 10)

\ 0.2 ~
0 VS el
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S 04r e g
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S 08 g
g P B = 0 ( No Coupling )
>
)
-1k 4
l'20 0.2 04 0.6 0.3 1 12
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Fig.11 Effect of Coupling Parameter (8) or Synchronization
Error ( Discrete Time )

Without Synchronization ( Sampling Time = 10 msec )
1.2 T -

Y1

48 T

a6} .

44}

Velocity

42 l

D

14 16 18 2 22 24 26 28 3
Time ( sec )( Sampling Time = 10 msec )

Fig.12 Effect of Sampling Time in Disturbance Rejection
(Independent Adaptive Feedforward Control — Discrete Time)

CONCLUDING REMARKS

The adaptive synchronizing appreach has been proposed for
two axes velocity control systems. Each axis was under
proportional feedback control and adaptive feedforward control.
The stability of adaptive synchronizing system was investigated
both in the continuous time domain and the discrete time domain.
Simulation results demonstrated the effectiveness of the proposed
approach. The extension of this approach to position control
problem is straightforward.
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Appendix A: Stability Proof of Continuous Time Adaptive
Feedforward Control System
Stability proofs in appendices are .all based on

hyperstability (e.g. Landau, 1979).

Note the following relations
among signals in Fig. 1.

e()=w d(t) - ox(t) (A-1)
dw(t)/dt+aw=b [kcc(t) + uf(t) +d] (A-2)
() = 00,0 + R (6 (do,(Hd) + @0, (A-3)
From Egs. (A-1) - (A-3),
{{a + bk Je(t) + de(t)/dt}/b
= (ab - T o, + 1/b - F O)dw/dt+ (dv,_ - F,O)v,
(A-4)

By defining,
G(s)=b/{s+(a+ kcb)]
87 =[ab 1/b -div],



e(t)

G(s)

PAA (NL)

67 (t) #(t)

Fig. A-1 Feedback Representation of Error Signal
( Continuous Time Adaptive Feedforward Centrol )

Eq. (A-4) can be written as

e(t) = G(s)( -6()T6()] (A-5)
where 8(t) = 8(t) - 6, and 6(p) is adapted by Eq. (5). Egs. (A-
5) and (5) describe the adaptation error dynamics, and can be
represented in an equivalent feedback form'in Fig. A-1. ¢(t) is
obviously bounded because ®. and de d/dt are both bounded. G(s)
in the feedforward path Of this feedback system is strictly

positive real.  Therefore, the feedback system is asymptotocally
stable if the Popov inequality,
t,

1
n() = f T o™ (Me(r) dt > a¢?
(]

is established. ;I‘his can be easily verified as shown below.
1
T\(t,)=_(5T(t)(1/YT(t))[d§T(t)/dt}dt A
A :

© =2 (E ¢ Bc,) - §708O) > -(121870)8(0)

Appendix B: Stability Proof of Continuous Time Adaptive
Synchronizing Control System

From Fig. 4, it can be easily checked that the following
equation is satified.

(/b)(s + {a, + (1+B)b Kk }] Bk, @] [m
Bk, (170,05 + (3, + (1+B)bk ) e, |  {my(t

(B-1)
where ~ -
m, (t) 8,7 (1o,
el (B-2)
m,(t) 6, (19,(1)
ﬁi(t) is defined by
Bw=80-6 ®-3)

where -
eiT= la/b, /b, -div ]
Egs. (B-1) and (B-2) can be represented 'by the feedback
system in Fig. B-1, 'G(s) in Fig. B-1 is
G(s) = r.:(llbl)[s +la +(+Pbk, )] Bk, J-l

Bk, (1/0,)[s + (2, + (14+B)b.k )]

(B-4)

This feedback system is asymptotically stable if G(s) is

strictly positive real (SPR) and the feedback block satisfies the
Popov inequaiity.

SPR Condition for G(s)

[ e(t)
4‘ eq(t)
~ G (s)
ol PAA (NL)
[ 07 () ¢ (2)
07 (t) ¢a(2)

Fig. B-1 Feedback Representation of Error Signal
(Continuous Time Synchronized Adaptive Feedforward Control)

G(s) is SPR if and only if G(s)"! is SPR. Noting that
A/2)(GGw)" + [G(jw)']")
a/b +(1+Bk,  -(12)Pk, +k,)
i [-(1/2)[3(1(:1 +k,)  ab +(1+ B)kJ
G(s) is SPR under the condition given by (9).
Popov Inequality for the Feedback Block
Egs. (7) and (8) imply
d8, W/t = (e, (V)
d8,/dt = y(ve, (1)

(B-5)

where we have noted ¢(t) = $,(t) = ¢,(t) in synchronizing control
and e, (t) are related by e(t) by

e,"® 148 B lle,®
» _cz‘(t)} 2 [ -B 1+‘:| l:ez(t)J
e, 1 [148 B][e 0
_ez(:)J ' 1428 [ B 1+[3} l:e;(t)]
The Popov inequality for the feedback block is established
as shown below.

.
f[ﬁ,’(t)cp(t) 8," o] [e,(t)] dt
A ex(t)
- t, e
=(1/1+2B) fﬁ,f(t){(1+B)¢(t>e;(o+a¢<:>c;(z>}
% +5,T(t)(B¢(t)el'(t)+(1+B)¢(t)e2'(t)l3¢el'(t)}dt

Y
=(1/1+2B)f 8,7 (((1+BAId8, (/de] + B, xy/de])
"+ 8,0 (BAIGB, (/ar+(L 4By, et

=(1/142B)[((1+B)(2} (8, (¢ )8, (¢,)-8,"(0)8, (0))
+ (4B} (8,7,)8,1)8,70)8,©)
+ (B (8,7 )8,,)-8,7(0)8,(0)))

> -(172v)8,7(0)8 (0)

-(1721)8,"(0)8,(0) -(B/21)(8,(01+8,(0))7(8,(0)+8 (0)).
(End of Proof)



Appendix C: Stability of Discrete Time Adaptive Feedforward
Control System

From Fig. 7, it can be easily checked that the following
equation is satisfied,

e(k) = (b,z/[z - (a,bk )]} (-67(k-1)(k-1)) 1)
where
800 =80 - 0
and 0 is given by
67 = (b, -1/, -div]
From Eq. (12),
’é’(k) = é‘(k-l) + m(k-l)c(k)‘ (C-2)
Eq. (C-1) can be represented by the feedback system in Fig.
C-la. We rearrange this feedback sytem as shown in Fig. C-1b.
The feedback system in Fig. C-la is asymptotically stable if and
only if the one in Fig. C-1b is asymptotically stable. The
transfer function of the linear block in Fig. C-1b is
b/l(1-Kb)) - (a,-b k )z "] (C-3)
For K>0, this transfer function is strictly positive real as long as
(a,-bk )/(1-Kb,) < 1
or
K< (mb)[1 - (a;bk )]

From Eq. (C-2),

(C-4)

~ k-t ~
80c1) = YZ 0-DeG) +80)

The summation of the input-output products of the feedback
block in Fig. C-1b is

Ky kel a
n(k,) =k2;[13,5 0G-DeG) + 8(0))6(k-1) + Kef)leck)

+ bz e (k)

) 2 —{a-bk)

NL1

67 (k1) ga(k 1)

Fig. C~1 Feedback Representation of Error Signal
( Discrete Time Adaptive Feedforward Control )

s

= (1/29)8"(k )B(x,) +§'{K - (W2)0"(k-1)0(k-1) ) (k)
- (122987(0)8(0) ;
Notice that n(k,) is lower bounded by - (1/2)87(0)8(0) if
K- (¥2)0" (- 1)¢(k-1) > 0
Therefore the feedback block satisfies the Popov inequality if
(C-5) is satified. From Egs. (C-4) and (C-5), the feedback

system is asymptotically stable for y satifying Eq. (13).
(End of Proof)

(C-5)

Appendix D: Stability of Discrete Time Adaptive Synchronizing
Control System

From Fig. 8, it can be checked that the following equation

is satisfied.
v el - 8,"(k-1)0, (k- 1)
(I- Az =B, | .
e,(k) - 8,70 1), (k-1),

where 1 is a 2x2 identity mairix,

e |:aax - bk, (1+B) b,k B :I B - by O ]
1% o g
bak,P 2y = bk, (1+B) 0 b,

800 =6,00-6,
6,=[-a,/b, -l/b;ii dfv ]

Eq.(D-1) can be represented by the feedback system in Fig.
D-1a, which can be further rearranged as shown in Fig. D-1b. The

(D-1)

stability is considered for the rearranged form in Fig. D-1b.
The tiansfer function matrix of the linear block in Fig. D-1b is

e;(k)

ex(k)

-+

[1- A z-1['B

PAA ( NL1)

[ejf(k—l) ¢,,(;._1)]
0 (k~ 1) goa (k - 1)

(a)

OO0~ Ay )
- +

Ea 1+8 @
[—ﬂ 1+ﬂ]

i W15 -
E —‘@"—[ -8 148 !
—;1(}——PAA(NL1) ;
R S NL2 |
ei(k) _ | ei(k)
(k) [ezuc)] e(’”*[e;(k)]

(®)

Fig. D-1 Feedback Representation of Error Signal
(Discrete Time Synchronized Adaptive Feedforward Control)



(A,-A,z1! (D-2)

where
gk [am,) - Ka+p) KB
¥ Kp (I/b,,) - K(1+B)
o —(adl/bd!) -k, (1+B) kB ]
R bt (8 - ky(14B)

B and K must be selected so that G(z) in Eq. (D-2) is
strictly positive real, which is the stated condition in 3.2. It
will be shown below that the feedback block in Fig. D-1b
satisfies the Popov inequality under Eq. (18). Therefore, the
feedback system is asymptotically stable when the condition
stated by (17) and (18) is saisfied.

Popov inequality
Egs. (15) and (16) imply
8,00 =8,0c-1) + 70, (k-De, @)
8,00 = 8,(k-1) + Y 9,0c-De, (k)

where we haye noted ¢(k-1) = ¢, (k-1) = ¢2(k-1) in synchronizing
control, and e, (k) are related to e d() by

e, (k) 4+ B cl(k)}
Lz‘(k)]z [ B 1*5} Lz(k)
or ‘
e, (k) 1 1+ B[] e’k
: Lm] . 1+28 [ B 1+B] Lz‘.(k)] »

The Popov inequality for the feedback block in Fig. D-1b is
established as follows.

~

KL '
z:'[el"(k-ncp(k-x) +Ke,"(0)1 8,"(k-D)o(k-1) + Ke," ()] [e, (k)
k=0 ¢, (k)

= 1/(1+2p) é;[{'5f(k-1)¢<k-1) +Ke,"(0)} {(1+B)e,"(k)+Be, (k)
(6,7 1Dk 1) + Ke, (0} {Be, “(0+(1+B)e, "(0))]

= UA2B)A+B)((1/29)8, 7198
+§gx - (V9" Dok-1)e, (k) - (1/2)6,7(0)8, (0)}
(1+8){(1/29)8,7(98 ()
+ é‘gx - (7/2)¢T(k-1>¢(k-1))ez‘i(k) - (11298,708,(0))
BL(1AB, (8,0

Ky . ~ ~
+ 2K - (V2070100 1)2¢, (e, ®) - (18, T©)8,0))]

>-(1/2v)8,7(0)8, (0)
- (1121)8,7(08,(0) - (B21)(8,(0+8,(0))(8,0)+8,(0)).
where we have noted
K - (0/2)6"(-1)ok-1) > 0
8,7008, (%) + 8,708, () + 28 "1, o
= ,(0+8,(0)7@ (k)+8,(0)) > 0
and e, "H(K) + ,(K) + 2¢, (e, (k) = (e, "(K)+e, (K))? > 0.
(End of Proof)
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ABSTRACT

An experimentai investigation of two tracking controllers; one
adaptive, the other non-adaptive; was performed on a three link in-parallel
manipulator to compare their performance. Both controllers were
challenged by the presence of modeling error, sensor noise and plant
- nonlinearities. The adaptive controller was an adaptive zero phase error
tracking controller (AZPETC), the nom-adaptive controller was a zero
phase error tracking controller (ZPETC) used with a tracking error
integrator. The overall performance of the adaptive controller was bester
than the non-adapiive coniroller’s.

1 INTRODUCTION

The ability of robotic manipulators to track a desired trajectory is
gaining importance, particularly in the arez of machining. One controller

that is good for this task is the zero phase error tracking controller !

(ZPETC) (Tomizuka, 1987). However, as with most feedforward
controllers. the ZPETC is sensitive to modeling error.

This paper experimentally evaluates two approaches for reducing the
model sensitivity of the ZPETC. The first, a non-adaptive controller,
places a tracking ercor integrator in parallei with the ZPETC. The second,

Figure 1
manipulator

Three link

in-parallel Figure 2 One link of the manipulator

an adaptive controller, is the adaptive ZPETC (AZPETC) proposed by
Tsao and Tomizuka (1987). The controllers were evaluated using a good
and a poor model of the plant.

This paper aiso adds to the body of experimental data on adaptive
controllers; they need to be implemented more often to determine their
usefulness in practical situations. Some of the more recent experimental
work was reported by Tomizuka, et al. (1988), Tsao and Tomizuka (1989),
and Shi and Stelson {1989).

In the following section, the equipment setup is described. In section
3, the good model of the analog plant is derived. Section 4 reviews the
ZPETC and AZPETC design ¢ integrator to the ZPETC design,
and implements both coi erso  The experimental results of both
controllers using each plant.model dréPresented in section 5. Conclusions
are given in section 6.

2 EQUIPMENT ss‘i@

The experimental'resultsypresented’ in this paper were obtained on a
three link in-paraliel manipulator that has three degrees of freadom; it is
shown in Figure 1. This“manipulator has three extensible links, spaced
120 degrees apart from each other; that are attached to an upper stationary
base pia:form by pin joints and to a lower moving platform by ball joints.

The setup of only one link will be discussed since the control
algorithms evalvated are decentralized controllers. The main drive
components of the link are labeled in Figure 2: motor, ballscrew, ballscrew
nut and support cylinder. Also labeled is a linear variablé differential
transformer (LVDT) and a linear velocity transducer (LVT); these
transducers provided feedback control signals. The equipment setup for
the controllers is shown in Figure 3. '

The motor used to drive each link is a low-inertia, copper-disc DC
servomotor. This motor allows a higher peak current than conventional
servorotors because it lacks iron laminations. The higher peak current
rating results in a higher starting torque. The motor is directly coupled to
the ballscrew. The ballscrew transforms rotary motion into linear motion
and has a lead of 5 mm/revolution. The ballscrew nut is rigidly attached
to the support cylinder. The support cylinder transfers power from the
ballscrew nut to the lower base plate.

The LVDT was used by both controllers for digital position feedback.
The signal was read by an A/D board; the quantization level was 43
microns.

The LVT was used by the plant for analog velocity feedback; this
configuration makes the analog piant a velocity servo.

A current ampiifier was used to power the DC motors. The current
amplifier was an H-bridge amplifier and allowed four quadrant operation;
the gain was 750 ‘amps/volt. The amplifier has a bandwidth of



Figure 3 Equipment setup for both controllers

approximately 1 KHz; it was modeled as a pure gain. The amplifier was
set for a maximum output of 30 amps for the first half second and 7.5
amps after 0.5 seconds.

The computer used to implement both digital controllers was a 12
MHz 80286 computer; it had a 12-bit 6 channel D/A board for output and
a 12-bit 8 channel A/D board for input. The command signal of the digital
controllers was output from the D/A board. This command voltage
controlled the amount of current sent to the DC motor by the amplifier.
The LVDT sensed the position of the link; an op-amp buffer and 100 Hz
low pass filter were used to reduce the noise level of the signal. The A/D
board read the filtered LVDT signal for use by the digital controllers.

3 MODEL OF ANALOG PLANT

The block diagram of the analog plant model is shown in Figure 4; the
inner velocity feedback loop represents viscous damping present in the
ballscrew assembly. The model parameters used are shown in Table 1.
Using these parameters and referring to Figure 4, the analog plant transfer
function is

16359

o= s(s + 567)

M

The high amplifier gain coupled with negative analog velocity
feedback was used to compensate for the effects of Coulomb and static
friction (Lee, Yien 1989). .

For reasons to be explained shortly, when the AZPETC was used it
was desirable for the closed-loop plant to be approximately first order.
The velocity feedback gain, K,, was adjusted to move the breakpoint of the
digital root locus such that the faster plant pole approached the origin and
became negligible. This value of K, was used with both controllers so that
a valid comparison of their performance could be made.

4 CONTROLLER DESIGN AND IMPLEMENTATION
4,1 ZPETC with Integral Control

The zero phase error tracking controller (ZPETC) is a digital
feedforward algorithm for tracking time-varying trajectories that are known
in advance (Tomizuka, 1987). The ZPETC uses a combination of

Current

2 Ballscrew
Volts Amplifier Motor Inertia  Rad/s Lead

Volts

Figure 4 Block diagram of analog plant model

10

- Table 1 - Model Parameters
. Kg=750 B
: Volts a Parameter Symbol Units Value
D/A i Current Amps oc
- Amplifier Motor Amplifier gain K, Amps/Volt 38.0
Computer Motor torque constant K. N-m/Amp 0.17011
A/D Ballscrew lead ! mm/radian 0.7958
System inertia J N-m-s? 2.4434 x 10*
3 LVDT gain K mVolts/mm 58.5
ow
Pass LVT gain, K, mVolts/(mm/s) 17.52
Filter Feedback gain K, | Dimensionless 0.0780
A Viscous damping B (N-m)/(rad-s) 1.03 x 10°
Op—Amp T [}
Buffer pole/zero cancellation and phase cancellation to obtain good tracking. The
plant poles and cancelable zeros are canceled; uncancelable zeros have their
phase canceled. Uncancelable zeros are all of the non-minimum phase
zeros and any zeros inside the unit circle that would cause a highly

oscillatory output if inverted. The phase cancellation of the uncancelable
zeros ensures that the system response has zero phase error for all frequen-

cies.
Suppose that the closed-loop transfer function is given by
qB. (g™
A (@™

where d is the relative degree of the plant, g is a one step time delay
operator and

Goos @™ = @

B(g)=by+bg™t + - +bg™ by»0
A(@N)=1+aqt'+-+ag™

To compensate for uncancelable zeros, B.(g™) is factored into two
parts so that

B(q™)=B(a)B! @™ )
where Bl(g7") = b, +b)'q +-+b)q™

The B.(g™") term contains the zeros that are cancelable; the B.(g™") term

contains the zeros that are uncancelable. Splitting B.(z") into two parts

leads to the design of the ZPETC, which is

A B ()

i per ol
B/ (™) [B/(DP

(k+d) @

where

Bi(@=by +big+-+b/q*
BX(1)=by + b +--+b)

The plant poles and cancelable zeros are canceled; the B,'(g) term cancels
the phase shift of B(g™") and the [B(1)]* term gives the transfer function
from y,(k) to y(k) unity DC gain.

If the plant dynamics are well known, the ZPETC works very well for
trajectory-control. However, the ZPETC is sensitive to modeling error.
Since modeling error is ubiquitous, an integral controller was added to
reduce tracking error caused by modeling error and/or disturbances. The
input to the integrator is the error between the desired position and the
plant position. The block diagram for this configuration is shown in
Figure 5. The transfer function from y,(k) to y(k) is

B'@B'@q™ i .
___—_‘(q)“_,(q ) @ M-¢)+q kB (@B @™ ©
| B : '
y4k) A@Y1-g™") +q KB (@B G ™)

If k, = 0, then the transfer function is the same as that for the ZPETC
only. Increasing k; adds the same term to the numerator and denominator,
but for small values of &, the transfer function remains almost the same.



ZPETC Closed—Loop Plant

Xord)  [Talaeg@ |0 . TleXaheday [ X
B BN + @ it

K
i
= T

) Integrator
yg(k) +~~ =

Figure 5 Block diagram of ZPETC with integrator

However, these small values of k; are large enough to remove tracking
error.

The ZPETC with integral control was implemented on the system
shown in Figure 3. The transfer function for the plant is given in equation
(1). The sampling period was 3 msec. Using zero-order hold equivalence,
the discrete-time transfer function is

-1 -1
Gz Y= 0.0449z7(1 + 0.5737z 1)
(1-z7"1-0.1822z7Y

Digital position feedback was used to place the closed-loop plant
poles; the slower pole was placed at 26 rad/sec. The closed-loop transfer
function for the plant was

©

G, (= 3673x107271 (1 + 057372
; (1 - 0.21962°")(1 - 0.9259z°1)

The ZPETC was designed using equation (7). The (I + 0.5737z")
term is on the negative real axis and would be highly oscillatory if
inverted. Therefore, B'(z")=(1+05737z"") and
B;(z™")=3.673x10"2. With the numerator factored this way, the ZPETC
prefilter was

Y]

r(k) = 6.3060 y(k+2) + 3.7692 y(k+1)
- 11.3100 y(k) + 2.2348 y(k-1)

The integrator was then tuned empirically to obtain the best system
response.

®

.2 _Adaptive Zero Phase Error Tracking Controller

Another approach for solving the modeling error sensitivity of the
ZPETC is to tune its coefficients in real time. The approach of Tsao and
Tomizuka (1987) of using a parameter adaptation algorithm to tune the
ZPETC coefficients was used here. The parameter adaptation algorithm
(PAA) used was a normalized least squares adaptation algorithm.

The first step in designing the adaptive zero phase error tracking
controller (AZPETC) is to separate the closed-loop system into a known
part and an unknown part. The numerator of the known part is also
divided into a cancelable and an uncancelable part so that

-d N B (a1 B (-1
Goka™ = k) _ 9°B@7) By(a) By(g™h)
Yn(k) A(@ AN ™

where A(g™")=1+a,g™' + - +a,g™ is the unknown part and Ay(q?) is the
known part of the denominator. B(@ ) =by+big T+ + bg™ is the
unknown part of the numerator; the known part of the numerator is split
into  B;(g™'), (B;(1)#0) and Bj(g™") which are the uncancelable and
cancelable portions, respectively. The separation of the numerator and
denominator into known and unknown parts is done to reduce the work
required by the estimation algorithm; only the unknown part will be
estimated.

Figure 6 shows the block diagram of the AZPETC. Referring to the
figure, the reference model for the PAA is ;

®

y(k) = %"f(_ql"—‘)r'(k) (10)

1

|

PAA

Bo(q—1 )
Agla~!

r' (k)

Closed—Loop Plant
q 98(a e (a hegta™)

A~ K)B(ak) Ao(a~")B5(a)

',m(k+'d) [B(1.K))2 Bi(a~B5(1)12 Ala=DAs(a™) k)

/ U (k) (k)

Figure 6 Block diagram of adaptive ZPETC
which can be ‘written as
yk+d) = 07d(k)
where  87=(a,,..,a,, by, .., b,) 4n
70 = (-y(k+d-1), ., -y(k+d-n), F'(R), .., r'(k-m))
Let n(k), ¢(k) and y(k) be defined by
n(k) = max (ggg) 11

y(k)
) = 2%
y(&) o

Normalization of the system inputs and outputs was performed to make the
algorithm more numerically robust. j

Using equations (12), the normalized least squares PAA for determin-
ing the unknown parameters in the AZPETC is

F(k-1) ¢ (k-d) e°(k)
1+ ¢"(k-d) F (k-1) ¢ (k-d)

B(k) = 8(k-1) + (13)

‘where e°(k) = y& - OT(k— 1)  (k-d) is the a priori adaptation error. The

adaptation gain is adjusted by

7,

1 fpg-1) - FO=D) @G- @T-d)FG-1)] (14
A(k) 1+ T(k-d) F (k-1) ¢ (k-d)

where A(k) is the forgetting or exponential weighting factor.

With exponential weighting, F(k) will rapidly approach 0 as the

parameters converge. For time varying systems, it is desirable to always

have the PAA ready to adapt to system changes. One way to do this is to

keep the trace of F(k) constant. The forgetting factor must be variable to
do this and is adjusted by

F(k) =

Ak)=1-

¢ 7(k-d) F2(k-1) (k-d) ] as)

1
tr F(r=0) [ 1 + 7(k-d) F(k-1) $(k-d)

The AZPETC was implemented on the system shown in Figure 3.
The transfer function for the plant is given in equation (1). The sampling
period was 16.8 msec. Using zero-order hold equivalence, the discrete-
time transfer function is

0.4335z7'(1 +0.1171z7)
(A-z7%(1-17235x107%z)

Digital position feedback was used to place the closed-loop poles. As
with the ZPETC with integral control, the slower closed-loop pole was
placed at 26 rad/sec. The closed-loop transfer function for the plant was

0.2995z7! (1 +0.1171 2%
(1-0.0544z°") (1 - 0.6461 z°Y)
All the terms above have to be considered unknown parameters for the

Gz = (16)

G,z hH=

an

-AZPETC algorithm since the coefficients depend on system parameters.

Equation (17) is of the form

274y + b,z

G,zh= 2

(18)
l+azt +a,z°



Four parameters; b,, b,, a,, and a,, would have to be estimated if
equation (18) was used to derive the reference model for the RLS
algorithm. The sample and compute time was estimated to be approxi-
mately 70 msec due to lengthy PAA calculations; it was not desired to use
a sampling period this long. ;

To overcome this problem, the plant was modeled as a unity DC gain
first order system; this reduced the number of parameters to be estimated
to two. The pole was placed at the location of the slowest plant pole.
This led to the transfer function

0.3539 !

(1-0.646127Y)

A simulation was performed to compare the step response of equations (17)
and (19); the two step responses were very similar.
Equation (19) is of the form

Gz = 19

3 -d b
G- —2 20)
l+a,z!

Equation (20) was used to design the AZPETC prefilter. Both b, and a,
are considered unknown; there is no known dynamics. Since there is no
known dynamics, the AZPETC lacks a constant coefficient block (see
Figure 6). This makes r(k) = u,(k). Also, the input to the reference
model does not have to be prefiltered by known dynamics; this makes
r/(k) = r(k) (see Figure 6). Therefore, the AZPETC prefilter is

(k) = bi [rk+1) + 4, )]

0

where 4, and l;o are parameter estimates provided by the RLS algorithm.

None of the methods mentioned by Tsao and Tomizuka (1987, 1989)
to prevent parameter pathology or drift were incorporated in the AZPETC.
However, simulations that included signal quantization and noise were
performed to see if the AZPETC would work before implementing it; all
of the simulations achieved parameter convergence.

@n

5 EXPERIMENTAL RESULTS

To test the controllers’ performance, a trajectory that represented the
range of motion possible with the manipulator was created in Cartesian
space. The location of the endpoint of the maripulator was described by
one Cartesian degree of freedom and two orientation degrees of freedom.
The trajectory was converted to the lengths for links 0, 1, and 2 using the
inverse kinematics of the manipulator (Lee, Shah 1988). The link
trajectory for link O is shown in Figure 7.

Only the results for link 0 will be shown; the results obtained on the
other links were similar. To judge the performance of the controllers, the
mean absolute error of the actual trajectories was used. The mean absolute
error (MAE) was calculated using this algorithm:

N
MAE =L 3 abs (s - Yaruad @2
{ N r=1
14
~
12} £\
~ / \
/ A
10F o \
T // Ao \/\\ / \\
\é =18 /¢ \\\ //,\ \\.
= y - \
§ sk / \/r \ \.\.
/ N A
S ik RS
s
gt 27 0 A ReE R LB D R a R a3
Time (sec)

Figure 7 Link O desired trajectory
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where N is the number of points in the trajectory and y is the link length.
Sections 5.1 and 5.2 show the results obtained with the controllers

using the good plant model; section 5.3 shows the results when the poor
plant model is used.

5.1 ZPETC with Integral Control

First, the integrator was turned off to see the performance of the
ZPETC with the plant configured as an analog velocity servo. Next, the
integrator was used with an empirically optimized integral time.

Integrator Off. This configuration tested the performance of the
ZPETC with the plant configured as an analog velocity servo. The test
had a MAE of 546.1 microns; the tracking error is shown in Figure 8.
The inset in the tracking error plots is the desired trajectory.

The error in the trajectory is caused by modeling error; the actual path
leads the desired path. The ZPETC is compensating for more phase shift
than is necessary; the plant poles are faster than the modeled poles.

Error (microns)
o

2 3 4 g 6 ¥4 8 Q9
Time (sec)

Figure 8 Trajectory error, integrator off

Integrator Operating. The integrator was then turned on to see if it
would reduce the tracking error. The integral time was chosen empiri-
cally by following a trajectory using different integral times; the integral
time with the lowest MAE (7; = 0.05) was chosen. The results are shown
in Table 2.

Table 2 - Integral Time versus MAE

MAE (microns)
by otk Good model Poor model
0.012 993 74.7
0.025 67.1 42.9
0.05 66.5 41.9
0.1 T 44.2
0.2 81.0 57.9

Table 2 shows that an integral time that is too short causes more error
because of overshoot problems, .an integral time that is too long does not
remove tracking error fast enough.

The results of running the ZPETC with integral contro! with
T, = 0.05 are shown in Figures 9-a and 9-b. Figure 9-a shows the’
tracking error of the plant; the MAE was 111.8 microns. Figure 9-b
shows the integrator control effort.

The spikes in the plant trajectory error are due to overshoot; they
always occur near a sharp turn in the trajectory (see inset in Figure 9-a).




