programming:

a beginner’s guide
to computers and
programming

| CHRISHAWKSLEY

AL SO |
: | L e |
‘ |

i d r ¥ 4 {
B »

: J(f 0 o st

i

_jgi 8462891

<Pa,sca,1 progra,mming>

A BEGINNER’S GUIDE TO COMPUTERS AND
PROGRAMMING

MILRRTDAY

E8462891

CHRIS HAWKSLEY

Department of Computer Science, University of Keele

CAMBRIDGE UNIVERSITY PRESS
Cambridge

London New York New Rochelle

Melbourne Sydney

Published by the Press Syndicate of the Univeréity of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

32 East 57th Street, New York, NY 10022, USA

296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia

© Cambridge University Press 1983

First published 1983
Reprinted 1983

Printed in Great Britain by the University Press, Cambridge
Library of Congress catalogue card number: 82-19760

British Library Cataloguing in Publication Data
Hawksley, C.
Pascal programming.
1. PASCAL (Computer program language)
I. Title
001.64'24 QA76.73.P2

ISBN 0 521 25302 0 hard covers
ISBN 0 521 27292 0 paperback

AJ

Pascal programming: a beginner’s guide
to computers and programming

To my parents

Preface

I'was surprised to find that although there are shelves of programming texts
on the market, many of which use the excellent language Pascal, none of
these books was proving to be a great success with the hundreds of students
taking subsidiary level computer programming courses I have taught over
the last eight years. I began to ponder why this should be. Was it the
standard of the text books themselves? Certainly not; several are of
first-class quality with authors of recognised programming and teaching
ability. Perhaps the students were not up to scratch? An easy get-out, this,
but not good enough since their eventual results were on the whole normal
and satisfactory. Could it be that my teaching style or ability was not good
enough to support and encourage reading of a back-up text? Well,
possibly, though my students tend to be a vocal lot yet they hurl no more
than a fair share of verbal abuse in my direction. On the other hand, I have
never found it easy to follow any of the text books closely in these courses
and this gives a clue to part of the problem.

I believe that the level of background knowledge assumed in most texts
is unrealistically high for a lot of students. There are two related problems.
Firstly, the bias tends to be towards the numerate scientist both in the
general approach and, too often, in the choice of examples. Also, the
starting point of many texts is too advanced for many newcomers to
computing, relying on additional course or book material to introduce
some of the fundamentals of computing.

I have tried to write this book for students who are learning computer
programming, probably for the first time, and probably as a subsidiary
subject. It is possible that their main subject or subjects may lie in
disciplines apparently far removed from computing though this is not
necessarily the case. I have not assumed previous exposure to computers

xi

xii Preface

nor any parallel courses in computer science. The examples require only
‘common-sense’ mathematical ability and have been chosen from a wide
range of disciplines. In addition, I hope the book will be of value to the
individual reader learning to program for the first time and as a ’starter
kit” for new computer science students, who should progress fairly rapidly
onto the more advanced texts covering algorithms, data and programs.

I have not tried to cover absolutely all of Pascal’s features in detail in
order to concentrate on using the more common ones and to keep the book
short. New programming facilities are introduced usually by typical
examples, with passing reference to the theoretical alternatives, though I
have given diagrams covering all of Pascal in an appendix. Most of the
language is covered. Left out are bits of Pascal that will appeal to the
programmer growing in experience who will eventually wish to peruse
more advanced texts on programming and problem solving in any case.
These are dealt with in chapter 14.

The text starts with a fairly gentle introduction to computers and
programming leading into the basic foundations of programming in the
Pascal language. The emphasis in part 2 is on practical applications of
computer programming and I have tried to select examples from disciplines
that may be familiar to the non-specialist student of computing: some text
processing, social science applications, and analysis of collected data, for
example.

It should be a source of encouragement to many readers to know that
in my experience there is little, if any, correlation between the ability to
become a competent programmer and the academic background of a
student. A number of first class mathematics students have passed through
the Computer Science Subsidiary Course at Keele. A proportional number
of students from the departments of Physics, Chemistry, Biology, Geology,
Psychology, Economics, Education, Geography, Sociology, Social Policy,
Music, English, French, German, Russian, Latin, History, American
Studies, Philosophy, Law, and Politics (my apologies for any omissions)
have succeeded equally well. Yet, every year I hear ‘Do you think I can
make it? I am not very good at maths., you know.’ Quite honestly, a
positive attitude is a far more important prerequisite than an ‘A’ level in
mathematics. Enjoy your programming.

I am indebted to many people for help and ideas in writing this book,
amongst whom I must include the generations of students who have helped
me to appreciate some of the common difficulties experienced by beginners.
In particular, I would like to thank Professor Colin Reeves for his
encouragement to write the book in the first place, Dr Neil White whose

Preface Xiii

meticulous knowledge of Pascal was invaluable and Lorraine Jarvis for
grappling with some of my handwriting and drawings. Any mistakes or
shortcomings that remain are entirely my own responsibility.

C. Hawksley
June 1982

Part 1

8462891

Contents

Preface

Introduction

Foundations of programming
Data and information

2.1 The computer as a tool

2.2 Symbols and symbolism

2.3 Information representation
2.4 The number crunching myth
2.5 Data types

Algorithms

3.1 Problem solving

3.2 Algorithms and language
3.3 Another myth

Computers and programs

4.1 A computer model

4.2 Programming languages

4.3 Operating systems

First steps in Pascal programming
5.1 Pascal program construction
5.2 Identifiers and declarations
5.3 Statements

5.4 Expressions

5.5 Standard functions

5.6 Boolean expressions

5.7 Reading and writing

5.8 Semicolons and compound statements
5.9 A short program

Control structures

6.1 Conditional statements

NN L W

=}

16
16
19
22
25
25
29
31
33
33
36
38
39
43

46
47
48
51
51

vii

viii

Part 2

10

11

12

13

Contents

6.2 Repetition

6.3 Choosing loop structures

6.4 The case statement

Procedures and functions

7.1 Declaring and calling procedures
7.2 Local variables

7.3 Global variables and parameters
7.4 Functions

Input and output

8.1 Modes of programming

8.2 Read and readln

8.3 Write and writeln

Problem Solving by Computer
Program design

9.1 ‘Good’ programs

9.2 Structured programs

9.3 Comments

9.4 Data structure

9.5 Top-down program design
Problems involving small quantities of data
10.1 A simple program

10.2 Conditionals in use

10.3 Looping the loop

10.4 Alternative strategies
10.5 Using procedures

10.6 Sets and in

Using more data

11.1 Arrays

11.2 Using arrays

11.3 Sorting

11.4 Tables of data

11.5 array and type

Text processing and files

12.1 Files

12.2 String manipulation

12.3 Word processing

12.4 Grammatical analysis
Analysing data and presenting results
13.1 Packages

13.2 Files, records and fields
13.3 Pascal records

56
59
62
65
65
67
69
74
78
79
80
83

87
89
90
90
93
93
94
99
99
101
105
106
109
111
116
116
117
123
126
133
137
137
141
143
152
160
161
162
164

14

Contents

13.4 Entry and verification of data
13.5 Presenting results
Further Pascal

14.1 Additional data types
14.2 Records and pointers
14.3 Recursion

14.4 Non-text files

14.5 File pointers
Appendices

Pascal syntax diagrams
Reserved words

Standard functions

Index

X

166
168
173
173
174
174
174
175
176
176
184
185
186

Introduction

The last thing one knows in constructing a work is what to put first.
Pensées, Blaise Pascal (1623-62)

There are certain similarities between learning to program a computer and
learning to play a musical instrument. In case the music profession or the
reader are alarmed by this let it be added quickly that the similarities lie
in aspects of the learning process and not in the activities themselves. In
common with many other learning processes, such as learning to cook or
to drive a car, both require an assimilation of three basic components:
background knowledge, technical skill and creative art.

In learning to play a piano, for example, it is not essential to know
precisely how the piano is constructed; how the hammer mechanism is
made or how to tune the instrument, but a basic level of appreciation of
the mechanics is most necessary. The fact that a note is struck and then
decays, that the loud and soft pedals affect the note quality in particular
ways are examples of this simple, but important, background knowledge.
In computer programming it is not essential to know how a computer
works from an electronic viewpoint, for instance, nor even in the case of
larger remote-access computers is it necessary to know where the computer
is located physically. On the other hand, it is important to appreciate some
of the general principles on which a digital computer operates in order to
gain a ‘feel” for the tasks to be performed. For this reason, the first few
chapters of this book aim to introduce the kind of background information
that is relevant to the programming of a computer. Terms such as data,
data processing and algorithm are explained and a model is used to
describe the fundamental workings of the computer itself.

In the case of the student musician, technical ability must be acquired

1

2 Introduction

through the learning of scales, finger positioning and chords, for example.
The repertoire of basic skills is gained partly from instruction by tutor or
text and, perhaps largely, by a ‘practice makes perfect” process. The parallel
skills in programming entail the learning of a programming language and
the way in which its constructions may be put to practical use. Again, the
educational process should include a substantial element of practical
involvement: the writing of small programs to reinforce the theory. With
thisinmind, thelaterchapters of part 1 introduce fundamental constructions
of the Pascal programming language together with short examples to
illustrate their use. It is important for the reader to supplement this by
attempting short exercises of the kind found at the ends of these chapters.

The introductory material is covered fairly quickly in part 1 and more
advanced details are omitted at this stage. The objective is to move on to
the creative side of programming as soon as possible, since the writing of
complete programs to solve actual problems is our ultimate aim. Armed
with the basic techniques, part 2 begins to explore the art of problem
solving: taking a loosely defined problem, creating a precise program
design and writing a complete Pascal program. In musical terms we begin
to play pieces of music using our own style and interpretation.
~ The examples in part 2 are chosen to demonstrate reasons for selecting
particular kinds of programming constructions and ways of putting them
together. Thus, much of the material introduced in part 1 is revisited in
the case studies of part 2 with an emphasis on practical applications. If you
experience difficulty in understanding a new Pascal feature introduced in
the earlier chapters, bear in mind that there is likely to be a further reference
or references in the index to later case studies which may be of assistance.
Also in later chapters, several new Pascal facilities are introduced which
can be added to the repertoire of programming skills once the fundamentals
have been firmly established.

There is no substitute for practical programming experience as a way
of boosting the confidence and of improving one’s ability to cope with new
problems. Yet problem solving is a fascinating and rewarding art which
will more than repay the initial effort to master the use of the building
blocks of programming. Note, finally, that one must always beware of
taking analogies too far. The fact that some musical instruments and some
computers possess keyboards is perhaps the only real similarity between
the two after all!

Foundations of programming

Data and information

2.1 The computer as a tool

It is easy to forget that the computer is a tool constructed by man.
Perhaps due to ignorance or fear of a rapidly expanding technology many
people have overlooked this fact. It is currently fashionable to attribute
man-like features to the computer; even to call it a superhuman brain
capable of enormous mental feats performed with tireless efficiency. Indeed,
this machine has become so humanised that we read regularly of computers
making mistakes. Bills issued for £0.00 form a source of amusing material
for the newspaper columnist. Complaints ranging from the delivery of
wrong goods to the erroneous disconnection of electricity meters are put
down to the apparently unavoidable occurrence of a computer error. The
consequences are not always amusing. An inanimate collection of circuits
has taken over from the anonymous clerk as the perfect scapegoat for
administrative irresponsibility.

Yet, in the same way that we would not entertain a claim that a
carpenter’s chisel made a mistake or that a writer’s pen spelled a word
wrongly we should recognise this twentieth century example for what it
is: a bad workman blaming his tools. For a computer is as much a tool
as a chisel or a pen. Furthermore, it is a deterministic device. It can and
will do precisely what it is told to do and only that, in common with chisels
and pens. Like all artifacts the computer is prone to malfunction, but this
is not at all the same as making a mistake. How often do we encounter
pens which misspell as a result of the nib breaking?

Thinking of the computer as a tool in this sense provides a convenient
starting point for this text. We are faced with a device which is not human,
not intelligent and which we must learn to use. The appropriate term is
to program a computer. More than with many longer established trades
the technical terms associated with this tool are numerous and apt to

S

6 Data and information

bewilder the new computer user. Where it is necessary to use these terms
we shall define them at the time they are first encountered. :

Havingintroduced the computer in this way we should not be discouraged
by the fact that it is a mere tool. It is an immensely powerful and general
one as we shall see. More immediately, let us examine the raw materials
on which our tool is to work.

2.2 Symbols and symbolism

In computing we are concerned not with the fashioning of some
physical medium as in the case of a chisel but with the manipulation of
intangible symbols. Symbols have been in use considerably longer than
computers. From hieroglyphics to Morse code, the Greek alphabet to
shorthand the use of symbols was one of man’s first steps on the road to
civilisation. A few examples of symbols are shown in figure 2.1.

Interestingly, we have become so accustomed to using symbols that we
take them for granted. More precisely, we do not distinguish clearly
between a symbol and our interpretation of that symbol. Symbols are
literally signs; marks on paper, shapes carved on stone, holes in punched
cards or a character typed on a keyboard are all examples of signs. Thus,
one may describe the symbol ‘O’ as a circle drawn on paper, no more and
no less.

However, to make use of a symbol we must impose some kind of
interpretation on it. Hence we may interpret the symbol ‘O’ as the 15th
letter of the English alphabet. In this sense the symbol ‘O’ is an example
of an item of data and the interpretation placed on the symbol is an example
of information conveyed by the data. This is more than a trivial distinction.

Figure 2.1. Symbols.

CLAVDIVS 1V afy 1234567890
Roman characters Greek letters Arabic numerals
=/ % £

-y % 7Y

Hieroglyphics Chinese

001101110 Y

Binary Morse code Shorthand

