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Introduction

In these notes we describe in some detail a certain framework for doing ho-
motopy theory. This approach emerged in the early 1990’s but has roots in earlier
work of Bousfield about localization and in the big advances made by Mahowald,
Ravenel, Devinatz, Hopkins and Smith towards deeper understanding of the role of
periodicity in stable homotopy theory. It is natural to look for a similar unstable
organization principle. This has not been found. Rather, certain tools have devel-
oped that have proved interesting. In addition, these tools are closely related to the
above developments, as well as to central developments that occurred in unstable
homotopy with the proof by Miller of the Sullivan conjecture and with the fruitful
use of Miller’s theorem by Lannes, Dwyer, Zabrodsky and many others.

During these developments the study of homotopy theory through function
complexes has become common and productive. Computation of important function
complexes has become possible, especially with classifying spaces as domains. It
turns out that it is also very productive to formulate localization theory in terms of
function complexes. In particular, the notion of a W-null space (essentially, a space
X for which the pointed function complex map, (W, X) is contractible) has become
central in localization theory.

Thus function complexes play a central role in these notes. In fact one can
view most of the material as developing techniques that allow better understanding
of function complexes not via computing their homology or homotopy groups but
directly as spaces. Therefore homotopy colimits become very useful, since it is
convenient to have them as domains of function complexes. A typical situation is
the decomposition of classifying spaces of compact Lie groups as homotopy colimits
by Jackowsky, McClure and Oliver, which allowed a much deeper understanding of
function complexes between these objects. In this framework we give an exposition
of the work of Bousfield and Thompson about unstable localization and relate it to
a better understanding of homological localization.

In relation to homotopy colimits a new tool that comes into play is that of
cellular spaces. We show that these structures are closely related to localization,
more specifically to colocalizations—homotopy fibres of the localization map. These
structures are treated here as being of interest in their own right. They allow one
to write, in some interesting instances, classical constructions as pointed homotopy
colimits. For example, we examine the symmetric product SP in this light. This
again allows one to better understand function complexes on these spaces which are
decomposed as homotopy colimits.



viii Introduction

Spaces, function complexes: The present notes can be read either in the
category of topological spaces having the homotopy type of CW-complexes, or in
the category of simplicial sets. We refer to both as ‘spaces’ and both categories
are denoted by S, or when we talk about pointed spaces as S,. Although it is
perfectly possible to carry out almost the whole theory within the category S, of
(well-pointed) spaces we do not follow this path, since it is not always the easiest
one (see 1.F.7). Rather we mix the discussion of the two categories, pointed and
unpointed, trying to avoid the confusion that this might create. The category of
simplicial sets is denoted by SS and that of topological spaces by Top. Often
we use the notions of cofibrant and fibrant spaces. In Top cofibrant means (well-
pointed) CW-complex while any space in SS is cofibrant. On the other hand, every
topological space is fibrant while fibrant in SS means a simplicial set that satisfies
the Kan extension condition [Q-1], [May-1]. Whenever some construction in Top,
especially those involving mapping spaces, yields a non-CW space we can and do pull
them back to the class of CW-spaces via the canonical CW-approximation (compare
e.g. (1.B) or (1.F)). By a finite space we mean finite CW-complex or a simplicial
set with a finite number of non-degenerate simplices.

Since we make extensive use of function complexes, care must be taken that

simplicial sets that serve as ranges in function complexes are fibrant, satisfying the
Kan extension condition [May-1], while spaces that serve as domains are always
assumed to be cofibrant. Otherwise the homotopy type of a function complex is not
invariant under weak equivalence and has in general no homotopy meaning. When
we write map, (X,Y) or map(X,Y) in the topological category we most often use
only the underlying weak homotopy type of the space of continuous maps (pointed
or unpointed), so there is no need to turn it into an internal function complex having
the homotopy type of a CW-complex. For typographical reasons the notation ¥ X
is often used to denote the function complex of maps from X to Y. We denote by ~
a weak homotopy equivalence. Certain constructions though are easier to handle in
the category of simplicial sets where map(X, Y) denotes the usual simplicial function
complex [M-1]. It is often possible to carry over the necessary construction naturally
into topological spaces using the pair of adjoint functors, the realization and singular
functors. This is demonstrated in some detail in section 1.F.

A note about chapters and sections: References within the nine chapters
are by sections, such as (B.3.5). When referring to other results or sections outside
the current chapter, the number of the chapter precedes that of the section or result,
e.g. (1.F.6.1) is a result or a figure from Chapter 1, section F.

Some details about the contents: In Chapter 1 the basic notions of f-
local space and f-localization with respect to an arbitrary map denoted Ly, are
introduced. A special case, when the map f is null homotopic, has particularly
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pleasant properties and is called nullification, denoted by P 4, when the map is A —
x. This last functor allows one to introduce an interesting partial order on spaces
that is analyzed later on: one says that X ‘supports Y’ or ‘kills Y’, denoted by:
X <Y, if PxY ~ *. This is really the same as the implication: For any space
T, map,(X,T) ~ * = map,(Y,T) ~ x (note, however, the different convention-
notation followed in [B-4] where the sense of < is reversed.)

We give a list of elementary properties of localization that forms the beginning
of a sort of localization calculus, which will allow one to control the behavior of Ly
under standard homotopy operations such as suspensions, loops, and homotopy
colimits. These functors are universal in two senses: they are both terminal and
initial up to homotopy in certain classes of maps. Still we do not know of any
inverse limit constructions that present them as initial objects analogous, say, to
the Bousfield-Kan construction of their localizations as an inverse limit.

We also begin to note some crucial properties that distinguish the nullifica-
tion from the general localization. In particular the following seems to be a basic
distinction:

When P4 is applied to the homotopy fibre of the coaugmentation map X —
P 4 X one always gets a point up to homotopy: that is, there is a universal equiva-
lence P 4(Fib(X — PaX)) ~ *. The analogous formula for Ly is weaker.

Chapter 2 can be seen as an attempt to discuss more carefully the homotopy
fibre of the nullification map. We now know that this homotopy fibre when con-
sidered as a functor on the pointed category of spaces is an idempotent augmented
functor denoted by P 4. It is a sort of colocalization. Since P 4 X is really X stripped
of all its ‘A-information’ the homotopy fibre P 4 X still contains all this information,
and in fact map, (4, P4X) is equivalent to map, (4, X). But in general P4X is not
the universal space with this property.

There is another canonical space denoted by CW 4 X, which is the universal
space having the same function complex from A as X. Furthermore, this space is
built out of copies of A and approximates X much in the same way that a classical
CW-approximation (which is ‘composed of cones on spheres’ and extracts the ‘spher-
ical information’ from X expressed in the usual form of the homotopy groups) gives
a ‘spherical approximation’ to X. Thus we consider here a second partial order,
denoted by <, which, as it turns out, is closely related to < defined above: namely,
X < Y if and only if the pointed space Y can be built from the pointed space
X by repeatedly applying, say, wedges and homotopy pushouts, possibly infinitely
many times. We say that Y is X-cellular in that case and we begin to consider the
above cellularization functor and this partial order in this chapter. For example,
one shows that a finite product of X-cellular spaces is X-cellular (2.D.16). Notice
that if X < Y, and X is acyclic with respect to any homology theory, then so is Y
(2.D.2.4). Also we shall see that X < Y always implies X < Y.
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In particular we begin to develop criteria to decide when a given space X is A-
cellular with respect to another space A, i.e. under what conditions the equivalence
X ~ CW 4 X, or equivalently A < X, holds. Such criteria are an important concern
in these notes. This is handy when, for example, one wants to know under which
conditions a K-acyclic space can be constructed by pushouts and telescopes from
elementary K-acyclic spaces such as the cofibre of the Adams map, and is therefore
the direct limit of its K-acyclic finite subspaces.

We then see that we have obtained two seemingly closely related functors. One
would like to show, but it is not yet known how to proceed in all cases, that these
two idempotent functors, the localization Ly and cellularization CW 4, are in fact
two facets of a symmetric construction that factors an arbitrary map X — Y into
a ‘cofibration’ followed by a ‘trivial fibration’: One can change the usual notions
of weak equivalences in the ‘standard model category’ of spaces by, -say, adding a
single map f to the class of weak equivalences, but this will change also the notion
of fibre maps along which one should be able to lift weak equivalences that are
cofibrations. The localization would then be just factorization of the map X —
while cellularizations are factorizations of the map * — Y. These observations put
the above functors in a reasonable theoretical light. Hirschhorn is developing these
directions carefully in a general framework [HH]. We then continue to show that
certain standard constructions lead to cellular relations: For example, the cellularity
of the third term in a fibration sequence can be predicted when one knows the other

two.

In Chapter 3 we turn to deeper technical properties of these idempotent func-
tors: the rule of commutation with the loop space functor and in general with
taking the homotopy fibre of a map. It turns out that one has general formulas
LiQ ~ QLs; and CW 40 ~ QCWy,4. These are a fundamental part of the calcu-
lus of localization and are used to show, for example, that fibrations over a W-null
base space are preserved by nullification with respect to the suspension of W, but
also much more general theorems concerning preservation of fibrations.

These formulas also allow us to compute directly, and formally, certain cellular
relations, such as the fact that Q¥X.X, the James construction on X, is always X-
cellular. In fact one can show that X <Y = X <« Y.

Chapter 4 serves two purposes. First, we present a more careful analysis of
pointed homotopy colimits and their relations to the usual strict colimits (direct
limits) of diagrams of spaces. This allows us to show, for example, that SP> X, the
Dold-Thom symmetric product on X, which initially, like the James construction,
is defined as a strict colimit via a point-wise construction, can in fact be built by
a pointed homotopy colimit starting from the initial space X alone. Since by the
Dold-Thom theorem the infinite symmetric product is a GEM, i.e. a product of
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Eilenberg-Mac Lane spaces, and is, in fact, the universal GEM associated with X,
its expression as a homotopy colimit allows one to understand better the operation
of localization and cellularization on generalized Eilenberg-Mac Lane spaces. This
paves the way to the second purpose: a cellular version of a ‘key lemma’ of Bousfield.
This version, following an approach taken by Dwyer [Dw-2], describes the cofibre
of the map from the Borel construction on X to the corresponding strict quotient
space. The key lemma is related to a cellular estimate of the cofibre as being £2X-
cellular. This means, roughly speaking, that in order to build ¥SP*°X from X,
exactly one copy of ¥.X is needed, and then only higher suspensions of X.

In Chapter 5 we show that if in a fibration sequence F' — E — B, Py 4 kills
both the base space and the total space, i.e. Py B ~ x and Py4 F ~ *, it may not
kill the fibre F', but it always turns it into an ‘homotopy abelian object’: we show
that Py 4 F is naturally an infinite loop space that is equivalent as such to a product
of Eilenberg—Mac Lane spaces with their usual abelian infinite loop space structure.
This is done using the results of Chapter 4, and notably Bousfield’s key lemma and
the ‘infinite loop space machine’ of Segal, as well as substantial parts of [DF-S],
extending their results to cofibrations and the cellular approximation functor.

This approach leads to a general theorem about the preservation of fibration
by the nullification ‘up to an abelian error term’. We then use the relation between
localization with respect to a map and nullification with respect to its cofibre to
deduce a general theorem about the localization of arbitrary fibration with respect
to any double suspension. It is perhaps worth mentioning here that the fact that the
classical Sullivan type of localization preserves fibrations over, say, a 1-connected
space is a special case of these preservation-of-fibrations theorems: from the present
point of view, the Sullivan localization of a simply-connected space with respect to
a prime p is just the Anderson localization [An], which is in turn simply nullification
with respect to S M?(p), the suspension of the two-dimensional Moore space. Sim-
ilar reasoning is then applied in examining the effect of applying CW 4 to a fibre
sequence, with results that are weaker, but similar to the above.

We then apply this theory to show two remarkable examples: first, we describe
a theorem of Neisendorfer which states that any finite 2-connected complex can be
recovered, up to p-completion, from its n-connected cover, for any n > 0. This
is much stronger than saying that these spaces must have non-trivial homotopy in
infinite dimensions: it shows that somehow this ‘infinite tail’ has all the information
needed to reconstruct the ‘lower dimensional information’. Secondly, we show that
this Serre-type result about homotopy groups in high dimensions generalizes to
infinite spaces, too: their A-homotopy groups must be non-trivial in infinitely many
dimensions, as long as these spaces are built by a finite number of A-cells from XA,
where 7 > 1.
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In Chapter 6 we turn our attention to homological localization with respect to
generalized homology theories, such as Morava K-theory. We essentially reproduce
the relevant material from [DF-S], showing that short of a small error term these
localizations preserve twice looped fibrations. It is reasonable to expect that this is
also the case for single-loop-space fibrations.

Note, however, that in order to present homological localization in the form
Ly, for some map f, one needs to take a ‘monster map’: in general, one must take
the union of all E,-homology isomorphisms between spaces whose cardinality is not
bigger than the coefficients of FE,.

While theoretically this can be done, it is certainly desirable to replace this
‘monster map’ with a smaller object. To do that so, one considers a classification
of possible nullification functors, under some restrictions in Chapter 7. This means
roughly the classification of all possible nullification functors with réspect to finite
p-torsion suspension spaces. The above mentioned nullity classes of spaces define
a very rough equivalence on spaces, namely, W and V are null-equivalent or of
the same nullity class if, for any pointed space T', one has the double implication:
map, (V,T) ~ « if and only if map, (W, T) ~ . This really means that the functors
Pw and Py are naturally equivalent. The classification of these classes, starting
with similar but much easier stable classes, is undertaken in Chapter 7. It turns
out, making heavy use of Bousfield’s theory of fibrations above, that the stable and
unstable classifications are not very different from each other, and the main invariant
needed here is the stable one, namely, the ‘Hopkins—Smith type’ related to Morava
K-theories. This possibly is not all that surprising since, if one localizes with respect
to a nilpotent self-map ¥W — W, one obtains the same results as nullification with
respect to W and, by [D-H-S], there is essentially only one self-map on the above
complexes that is not nilpotent. Using the classification of nullity classes one can
also classify the closely related cellular classes of the above suspension spaces.

The classification of nullity classes and possible nullification functors can be
used to analyse higher periodicity. This is done in Chapter 8 with respect to v;. We
follow the work of Bousfield and Thompson in regard to K-theory localization. But
we use the cellular analysis to express the nullification and K-localization functors
in more elementary terms, as a telescope of the Adams map. Thus in this case,
modulo some technicalities, the above monster map used to express K-localization
can be replaced by a single map between two Moore spaces. This is a sort of ideal
situation that could hold, in general, if a kind of ‘unstable telescope conjecture’ were
true.

The basic result is that one can express the function complex
map, (M, Py(1)E) as a mapping telescope of function complexes, which inverts v;
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in the most elementary way: namely, as
Tel(EM — ET'M _, pThM )

where M denotes the appropriate Moore space. This latter telescope is of course
neither idempotent nor coaugmented as a functor, so it cannot replace the localiza-
tion in general, but it still captures in a direct way the v;-periodic homotopy. In
particular its homotopy groups depend only on the action of the v; operator on 7, E
as a graded group.

As a corollary one can explain to what extent higher loop spaces on K-acyclic
spaces are still acyclic. In addition one can show that K-acyclic, p-torsion spaces
whose loop spaces are also K-acyclic can be built via cofibration sequences from the
cofibre of the Adams map v;.

In the final chapter, Chapter 9, we develop several tools that allow us to detect
and prove interesting cellular inequalities. The basic idea here is the passage from
pointed homotopy colimits over arbitrary indexing categories to unpointed homotopy
colimits over categories with a contractible classifying space. Explaining ideas from
[Ch-2] and [DF-5], the program here is to show that often the well-known theorems
on connectivity of homotopy constructions such as homotopy fibre can be strength-
ened to a theorem asserting the cellularity of these constructions. On occasion this
gives new connectivity results too. A typical result in this direction is that the
fibre of the cofibration quotient map X — X/A is always A-cellular. Furthermore
the homotopy fibre of a map to connected space can be built by pointed homotopy
colimits from the collection of the actual inverses of points (say barycentres) in the
base space.

We conclude with some applications of this technique: In particular one can
show that while there is no easy relationship between the homotopy limit and
colimits of diagrams, some inequalities can be proven in general between these
constructions. These form a sort of generalization of the elementary inequality
IOX <« QX
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1. COAUGMENTED HOMOTOPY IDEMPOTENT
LOCALIZATION FUNCTORS

Introduction

In this chapter basic notions that will be used throughout the present notes
are defined, in particular that of f-local spaces and f-equivalences between spaces.
A list of elementary properties of the basic notions and of localization is given in
section 1.A.8 below. These properties mostly follow easily and directly from the
definitions and are used in many arguments. A construction of the f-localization
functor is given and its property of continuity is discussed. This is useful but not
essential in constructing a fibrewise version of localization. Continuity also renders
certain induced maps such as aut(X) — aut(LsX) easily understandable, where
aut denotes the spaces of self-homotopy equivalences.

We pay some attention to the localization of homotopy colimits. The in-
terested reader can find a brief discussion of these colimits in Appendix HL below.
The fact that localization behaves relatively well under homotopy colimits-including
wedge sum, for example—is very helpful later on. We then show that well-known
localization functors including e.g. the Quillen plus construction are special cases
of this general homotopy localization. Then there is a discussion of fibrewise local-
ization and several approaches are discussed. This discussion is carried out in a bit
more general framework of applying homotopy functors fibrewise. We show how to
do that using homotopy colimits under mild assumptions on the functor. As a first
application of these fibrewise localizations one deduces two very useful properties of
the homotopy fibre of the localization map: first we show that if the localization kills
the fibre then it preserves the fibration. Then we show that the localization with
respect to a null map always kills the homotopy fibre of the localization map.

A. Local spaces, null spaces, localization functors, elementary facts

We consider here the notion of f-local space where f : A — B is an arbitrary
cofibration map between cofibrant spaces (i.e. CW-complexes if we work in Top).
Bousfield in [B-2] has already shown how to associate an f-local space L;X with
any space X together with a coaugmentation map X — L;X. It turns out that
in spite of its generality, this localization functor has many useful properties that
combine to form a ‘calculus of localization’. We examine in this chapter some of
these most basic properties. In case the cofibration f is a null homotopic map,
the functor Ly has stronger and cleaner properties and is called nullification (with
respect to AV B, see below).



2 1. Coaugmented functors

In practice, all the known coaugmented homotopy functors F which are also
idempotent (i.e. roughly FF is equivalent to F') have the form Ly for a suitable
f, so the present framework and result may well apply to any idempotent functor.
Notice, however, that Bousfield-Kan’s R, is not in general idempotent.

In this chapter we also consider somewhat more delicate properties of local-
ization, in particular its value on homotopy colimits and on the homotopy fibre of
the localization (coaugmentation) map.

A.1 DEFINITION : (f-local, W-null): We say that Y is f-local (where f is a map
f : A — B between cofibrant spaces) if Y is fibrant and the map f induces a weak
homotopy equivalence on function complexes,

map(f,Y) : map(B,Y) — map(4,Y).

In case the map is simply w : x — W one refers to a w-local space Y as W-null;
this means that the natural map Y —=» map(W,Y) is an equivalence. Equivalently
one defines these concepts in the pointed category of spaces (where now all spaces
are assumed to be well-pointed): A fibrant space is local if the corresponding map
of function complexes of pointed maps is a weak equivalence

map, (f,Y) : map,(B,Y) — map,(4,Y).

Remark: The fibration map, (V, X) — map(V, X) — X for any cofibrant V' over
any connected and fibrant X shows that for a connected and fibrant space X the
map induced by f, namely map(f,Y), is an equivalence iff the map map,(f,Y) is
an equivalence with respect to any choice of (‘well-pointed’) base points.

A.1.1 ExAMPLES: We give examples in sections E and 2.D below. Here we
note several quick illustrations: If the map f is the map of the n-sphere to a point
* — S™ then an f-local connected space is an S™-null connected space, i.e. it
is a space X whose n-th loop space Q"X is contractible. Thus such a space has
no homotopy groups above dimension n — 1 and is otherwise arbitrary. Thus it is
just an arbitrary Postnikov (n — 1)-stage. Dually it is easy to see that a space X
is n-connected if and only if any Eilenberg-Mac Lane space K(G,i) for 0 <i < n
is X-null. For a more difficult example, if the map g is the degree p map from the
n-sphere to itself, then a connected, pointed space X is g-local if the map on its n-th
loop space raising every loop to its p-th power is a weak homotopy equivalence of
the underlying spaces, disregarding the loop structure. For n > 1 this means that
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all the homotopy groups above dimension (n — 1) are uniquely p divisible, see E.3
below.

A.1.2 REMARK: One might ask why we do not define a ‘homotopy f-local’
space to be a space W for which the induced map on homotopy classes of maps
(rather than on the full function complexes), namely the map [f, W] : [B, W] —
[A, W] is an isomorphism of sets. This is a perfectly good definition, but it turns
out that it too leads directly to the definition given above. The reason is that given
a notion of ‘ f-local’ space we are mostly interested in functors that turn an arbitrary
space into an ‘f-local’ one. Now the following fact shows that as far as functorial
constructions are concerned the definition using homotopy classes leads to one in
which the full function complexes are used.

A.1.3 FacT: For any continuous (or simplicial, see C.8 below), idempotent,
coaugmented functor F : {Spaces} — {Spaces}, if, for all X, the induced map
on homotopy classes [f, FX] is an isomorphism of sets, then FX is automatically
f-local: map(f, FX) : map(B, FX) — map(A, FX) is an equivalence.

This is Corollary (1.3) in [DF-4] which was written in view of this and similar
questions.

Another way of viewing Fact A.1.3 is to notice that it implies that it is impos-
sible to canonically associate a universal ‘homotopy f-local’ space with every space
X.

This is best understood by an example (due to G. Mislin): Let f : ST — «,
then a ‘homotopy f-local’ space is just a simply connected space. We ask: Is there
an initial object among all maps of a space, say of RP?, to 1-connected spaces?
The answer is NO. To see why, notice that by unique factorization up to homotopy
such a space U would need to have H2(U,Z) = Z/2Z since the non-trivial map
RP? — CP* would also have two factors through U, uniquely up to homotopy.
But U is 1-connected and its second cohomology cannot have torsion.

A.2 DEFINITION: A functor F is called coaugmented if it comes with a natural
transformation Id — F, i.e. for each X € § a natural map jx =j: X - FX. A
coaugmented functor F is said to be idempotent if both natural maps: FX =3 FFX,
namely both jpx and F(jx), are weak equivalences and are homotopic to each
other. We say that the coaugmentation map jx is homotopy universal with respect
to maps X — T into f-local spaces T if any such map factors up to homotopy
through X — FX and the factorization is unique up to homotopy.

The next few pages will present a construction of localization functor [B-2]
[DF-2] [C-P-P]:
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A.3 THEOREM: For any map f : A — B in S (or S,., see remark A.7) there
exists a functor Ly, called the f-localization functor, which is coaugmented and
homotopically idempotent. Any two such functors are naturally weakly equivalent
to each other. The map X — L;X is a homotopically universal map to f-local
spaces. Moreover, Ly can be chosen to be continuous or simplicial in the sense
explained (1.C) below.

Proof: The construction of Ly is carried out in section B below. The proofs of
claims about Ly are in (B.5), (C.1), (C.2), and (C.12) below.

A.4 NULLIFICATION FUNCTORS Py, NULLITY CLASSES: A special role is played
by localization with respect to maps of the form W — x, or x — W. In that case
a pointed and connected space X is (W — x)-local or, by (A.1), W-null if and
only if map, (W, X) ~ x or map(W, X) ~ X. The localization with respect to these
null maps deserves a special name due to its much better behavior and common
occurrence. One denotes the localization Ly _,. = L._w by Pw; we call Py the
W-nullification functor. Bousfield used the term W-periodization for Py . It plays
a major role in his theory of unstable periodic homotopy, as we shall see below.
This notation also emphasizes the affinity of general nullification functors to their
early predecessor, the Postnikov section functor P, that we saw above.

Of course, the condition map, (W, X) ~ % occurs often in homotopy theory
especially since the proof by Miller of the Sullivan conjecture, that says in these
terms that any finite-dimensional space is K (m, 1)-null for any locally finite group
. The concept of trivial function complex plays a major role in the present notes
and we use it right away to define a useful partial order on pointed or unpointed
spaces.

A.5 NULLITY CLASSES, (WEAK) PARTIAL ORDER X < Y: We say that X supports
Y or that Y is X-supported and denote it by X < Y if any X-null space is also
Y-null. This is a transitive but not anti-reflexive relation. It is equivalent as we
shall see to PxY ~ x (A.8)(e.9) below. One says that X and Y have the same
nullity (class) if X <Y and also Y < X. Thus S™ < S"*! and X V X has the same
nullity as X. Notice that [B-4] uses the opposite convention in the notation of the
partial order

A.6 EXAMPLE: Pgn+1 is the n-th Postnikov section P, X which can be characterized
by Q"*1P, X ~ x. Compare A.1.1 above. An important result of Zabrodsky and
Miller [M], a strong version of which is given in (2.D.13) below, says in this notation
that for any topological group G one has G < BG. In fact we shall prove the sharper
inequality: ¥G < BG is always true. See (9.D.4) below.



