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Preface

Fermat’s problem, also called Fermat’s last theorem, has attracted the
attention of mathematicians for more than three centuries. Many clever
methods have been devised to attack the problem, and many beautiful
theories have been created with the aim of proving the theorem. Yet, despite
all the attempts, the question remains unanswered.

The topic is presented in the form of lectures, where I survey the main
lines of work on the problem. In the first two lectures, there is a very brief
description of the early history, as well as a selection of a few of the more
representative recent results. In the lectures which follow, I examine in suc- .
cession the main theories connected with the problem. The last two lectures
are about analogues to Fermat’s theorem.

Some of these lectures were actually given, in a shorter version, at the
Institut Henri Poincaré, in Paris, as well as at Queen’s University, in 1977.

I endeavoured to produce a text, readable by mathematicians in general,
and not only by specialists in number theory. However, due to a limitation
in size, I am aware that certain points will appear sketchy.

Another book on Fermat’s theorem, now in preparation, will contain a
considerable amount of the technical developments omitted here. It will
serve those who wish to learn these matters in deptn and, I hope, it will
clarify and complement the present volume.

It is for me gratifying to acknowledge the nelp and encouragement I

“received in the preparation of this book: A. J. Coleman and the Mathematics
Department at Queen’s University—for providing excellent working con-
ditions; E. M. Wight—for her dilligent and skillful typing of the manuscript;
G. Cornell—who read the book and helped very much in improving the
style; The Canada Council—for partial support; C. Pisot and J. Oesterlé—
who arranged for my lectures at the Institut Henri Poincaré.
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It is also my pleasure to report here various suggestions, criticisms and
comments from several specialists, whom I consulted on specific points or
to whom I have sent an earlier typescript version of this book. In alphabetical
order: A. Baker, D. Bertrand, K. Inkeri, G. Kreisel, H. W. Lenstra Jr., J. M.
Masley, M. Mendés-France, B. Mazur, T. Metsankyld, A. Odlyzko, K.
Ribet, A. Robert, P. Samuel, A. Schinzel, E. Snapper, C. L. Stewant,
* G. Terjanian, A. J. van der Poorten, S. S. Wagstaff, M. Waldschmidt,
L. C. Washington.

Kingston, March, 1979 Paulo Ribenboim
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LECTURE 1

The Early History of
Fermat’s Last Theorem

1. The Problem

Pierre de Fermat (1601-1665) was a French judge who lived in Toulouse.
He was a universal spirit, cultivating poetry, Greek philology, law but mainly
mathematics: His special interest concerned' the solutions of equations in
integers.

For example, Fermat studied equations of the type

X2 —dY?= 1,

where d is a positive square-free integer (that is, without square factors
different from 1) and-he discovered the existence of infinitely many solutions.
He has also discovered which natural numbers n may be written as the sum
of two squares, namely those with the following property: every prime factor
p of n which is congruent to 3 modulo 4 must divide n to an even power.

In the margin of his copy of Bachet’s edition of the complete works of
Diophantus, Fermat wrote:

It is impossible to separate a cube ihto two cubes, or a biquadrate into two
biquadrates, or in general any power higher than the second into powers of
like degree; I have discovered a truly remarkable proof which this margin is
too small to contain.

This copy is now lost, but the remark appears in the 1670 edition of the
works of Fermat, edited in Toulouse by his son Samuel de Fermat. It is
stated in Dickson’s History of the Theory of Numbers, volume II, that
Fermat’s assertion was made about 1637. Tannery (1883) mentions a letter
from Fermat to Mersenne (for Sainte-Croix) in which he wishes to find two
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cubes whose sum is a cube, and two biquadrates whose sum is a biquadrate.
This letter appears, with the date June 1638, in volume 7 of Correspondance
du Pére Marin Mersenne (1962); see also Itard (1948). The same problem was
proposed to Frénicle de Bessy (1640) in a letter to Mersenne, and to Wallis
and Brouncker in a letter to Digby, written in 1657, but there is no mention
of the remarkable proof he had supposedly found.

In modern language, Fermat’s statement means:

The equation X" + Y" = Z", where n is a natural number larger than 2,
has no solution in integers all different from 0.

No proof of this statement was ever found among Fermat’s papers. He
did, however, write a proofthat the equations X* — Y* = Z2and X* + Y* =
Z* have no solutions in integers all different from 0. In fact, this is one
of two proofs by Fermat in number theory which have been preserved’.
With very few exceptions, all Fermat’s other assertions have now been
confirmed. So this problem is usually called Fermat’s last theorem, despite
the fact that it has never been proved.

Fermat’s most notable erroneous belief concerns the numbers F, =
2%" 4+ 1, which he thought were always prime. But Euler showed that Fj
is not a prime. Sierpiniski and Schinzel pointed out some other false assertions
made by Fermat.

Mathematicians have debated whether Fermat indeed possessed the proof
of the theorem. Perhaps, at one point, he mistakenly believed he had found
such a proof. Despite Fermat’s honesty and frankness in acknowledging
imperfect conclusions, it is very difficult to understand today, how the most
distinguished mathematicians could have failed to rediscover a proof, if one
had existed.

To illustrate Fermat’s candor, we quote from his letter of October 18,
1640 to Frénicle de Bessy:

Mais je vous advoue tout net (car par advance je vous advertis que comme
je suis pas capable de m’attribuer plus que je nesgay, je dis avec méme franchise
ce que je ne sgay pas) que je n’ay peu encore démonstrer I'exclusion de tous
diviseurs en cette belle proposition que je vous avois envoyée, et que vous
m’avez confirmée touchant les nombres 3, 5, 17, 257, 65537 & c. Car bien que
je réduise I'exclusion a la plupart des nombres, et que j’aye méme des raisons
probables pur le reste, je n’ay peu encore démonstrer nécessairement la
vérité de cette proposition, de laquelle pourtant je ne doute non plus a cette
heure que je faisois auparavant. Si vous en avez la preuve assurée, vous
m’obli_.rez de me la communiquer: car aprés cela rien ne m’arrestera en ces
matiéres.

! The other proof, partial but very interesting, was brought to light and reproduced by Hofmann
(1943, pages 41-44). Fermat showed that the only solutions in integers of the system x = 2y% — 1,
x?=222—1arex=1andx="7.
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Again, in a letter to Pascal from August 29, 1654, Fermat proposes the
same problem:

Au reste, il n’est rien a 'avenir que je ne vous communique avec toute
franchise. Songez cependant, si vous le trouvez 4 propos, a cette proposition:
les puissances carrées de 2, augmentées de I'unité, sont toujours des nombres
premiers: 22 + 1 =15, 22 +1=17, 2% +1=257, 2*" + 1 = 65531, sont
premiers, et ainsi 4 l'infini. C'est une proposition de la verité de laquelle je
vous répond. La démonstration en est trés malaisée, et je vous avoue que je
n’ai pu encore la trouver pleinement; je ne vous la proposerois pas pour la
chercher si j’en étois venu a bout.

Incidentally Pascal has written to Fermat stating:

Je vous tiens pour le plus grand géométre de toute 'Europe.

It is also highly improbable that Fermat would have claimed to have
proved his last theorem, just because he succeeded in proving it for a few
small exponents. ;

In contrast, Gauss believed that Fermat’s assertions were mostly extra-
polations from particular casés. In 1807, Gauss wrote: “Higher arithmetic
has this special feature that many of its most beautiful theorems may be
easily discovered by induction, while any proof can be only obtained with
the utmost difficulty. Thus, it was one of the great merits of Euler to have
proved several of Fermat's theorems which he obtained, it appears, by
induction”. g

Even though he himself gave a proof for the case of cubes, Gauss did not
hold the problem in such high esteem. On March 21, 1816, he wrote to
Olbers about the recent mathematical contest of the Paris Academy on
Fermat’s last theorem:

I am very much obliged for your news concerning the Paris prize. But I
confess that Fermat’s theorem as an isolated proposition has very little
interest for me, because I could easily lay down a multitude of such proposi-~
tions, which one could neither prove nor dispose of.

- In trying to prove Fermat’s theorem for every positive integer n > 3, I
make the following easy observation. If the theorem holds for an integer m
and n-= Im is a multiple of m, then it holds also for n. For, if x, y, z are non-
zero integers and x" + y" = z" then (x)" + ()" = ()", contradicting the
hypothesis. Since every integer n > 3 is a multiple of 4 or of a prime p # 2,
it suffices to prove Fermat’s conjecture for n = 4 and for every prime p # 2.
However, I shall occassionally also mention some proofs for exponents
of the form 2p, or p" where p is an odd prime.

The statement of Fermat’s last theorem is often subdivided further into
two cases:

The first case holds for the exponent p when there do not exist integers
X, y, z such that p ¥ xyz and x? + y? = z”.
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The second case holds for the exponent p when there do not exist integers
X, y, z, all different from 0, such that p|xyz, ged(x,y,z) = 1 and x? + y? = 22,

2. Early Attempts

1t was already known in antiquity that a sum of two squares of integers may
well be the square of another integer. Pythagoras was supposed to have
proven that the lengths a, b, c of the sides of a right-angle triangle satisfy the
relation

a* + b* = ¢?;

so the above fact just means the existence of such triangles with sides mea-
sured by integers.

But the situation is already very different for cubes, biquadrates and so on.
Fermat’s proof for the case of biquadrates is very ingenious and proceeds
by the method which he called infinite descent. Roughly, it goes as follows:
Suppose a certain equation f(X,Y,Z) = 0 has integral solutions a, b, ¢, with
¢ > 0, the method just consists in finding another solution in integers a’, b’, ¢’
with 0 < ¢’ < c. Repeating this procedure a number of times, one would
reach a solution a”, b”, ¢”, with 0 < ¢” < 1, which is absurd. This method of
infinite descent is nothing but the well-ordering principle of the natural
numbers. ' :

Little by little Fermat’s problem aroused the interest of mathematicians
and a dazzling array of the best minds turned to it.

Euler considered the case of cubes. Without loss of generality, one may
assume x> + y* = z* where x, y, z are pairwise relatively prime integers,
x, yare odd, so x=a—b, y=a+b. Then x + y=2a, x> —xy + y* =
a® + 3b* and z*> = x> + y* = 2a(a’ + 3b?), where the integers 2a, a> + 3b>
are either relatively prime or have their greatest common divisor equal to 3.
Euler was led to studying odd cubes a* + 3b? (with a, b relatively prime),
and forms of their divisors; he concluded the proof by the method of infinite
descent. The properties of the numbers a® + 3b* which were required had
to be derived from a detailed study of divisibility, and therefore were omitted
from the proof published in Euler’s book on algebra (1822). This proof, with
the same gap, was reproduced by Legendre. Later, mathematicians intrigued
by the missing steps were able without much difficulty, to reconstruct the
proof on a sound basis. In today’s language, numbers of the form a? + 3b?
are norms of algebraic integers of the quadratic extension Q(/—3) of the
rational field Q and the required properties can be deduced from the unique
factorization theorem, which is valid in that field.

Gauss gave another proof for the case of cubes. His proof was not
“rational” since it involved complex numbers, namely those generated by
the cube root of unity { = (—1 + \/—3)/2, i.e,, numbers from the quadratic
field Q(/ — 3). He consciously used the arithmetic properties of this field. The
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underlying idea was to call “integers” all numbers of the form (a + by/— 3)/2
where a, b are integers of the same parity; then to define divisibility and the
prime integers, and to use the fact that every integer is, in a unique way, the
product of powers of primes. Of course some new facts appeared. First,
the integers +{, +(? that divide 1 are “units” since {{?> = 1 and therefore
should not be taken into account so to speak, in questions of divisibility.
Thus, all the properties have to be stated “up to units”. Secondly, the unique
factorization, which was taken for granted, was by no means immediate—in
fact it turned out to be false in general. I shall return to this later.

Gauss’s proof was an early incursion into the realm of number fields, i.e.,
those sets of complex numbers obtained from the roots of polynomials by
the operations of addition, subtraction, multiplication, and division.

In the 1820s a number of distinguished French and German mathema-
ticians were trying intensively to prove Fermat’s theorem.

In 1825, G. Lejeune Dirichlet read at the Académie des Sciences de Paris
a paper where he attempted to prove the theorem for the exponent 5. In fact
his proof was incomplete, as pointed out by Legendre, who provided an
independent and complete proof. Dirichlet then completed his own proof,
which was published in Crelle Journal, in 1828.

Dirichlet’s proof is “rational”, and involves numbers of the form a® — 5b2.
He carefully analyzed the nature of such numbers which are Sth powers
when either a, b are odd, or a, b have different parity, and 5 does not divide q,
5divides b, and g, b are relatively prime. Nowadays the properties he derived
can be obtained from the arithmetic of the field @(\/3). In this field too,
every integer has a unique factorization. Moreover every unit is a power of
(1 ++/5)/2, which is of crucial importance in the proof. Of course, for
Dirichlet this knowledge took the form of numerical manipulations which
lead-to the same result.

In 1832 Dirichlet settled the theorem for the exponent 14.

The next important advance was due to Lamé, who, in 1839 proved the
theorem for n = 7. Soon after, Lebesgue simplified Lamé’s proof consider-
ably by a clever "se of the identity,

X+Y+2)-X"+Y"+27)
=71X+Y)X + Z)Y + Z) ;
X{X2 + Y2 ZE XY 4+ XZ + YZ)Y? + XYZ(X + Y + 2)]

already considered by Lamé.

While these special cases of small exponents were being studied, a
very remarkable theorem was proved by Sophie Germain, a French
mathematician.

Previously Barlow, and then Abel, had indicated interesting relations that
X, ¥, z must satisfy if x” + y? = z” (and x, y, z are not zero). Through clever
manipulations, Sophie Germain proved:

If p is an odd prime such that 2p + 1 is also a prime then the first case of
Fermat’s theorem holds for p.



