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Preface

Aims and scope

Big Queues aims to give a simple and elegant account of how large deviations
theory can be applied to queueing problems. Large deviations theory is a
collection of powerful results and general techniques for studying rare events,
and has been applied to queueing problems in a variety of ways.

The strengths of large deviations theory are these: it is powerful enough
that one can answer many questions which are hard to answer otherwise, and
it is general enough that one can draw broad conclusions without relying on
special case calculations. This latter strength has been hidden by the rather
piecemeal development of the subject so far, and we feel it is now time for
an account which shows that (in this case at least) abstraction can serve to
simplify rather than to obscure.

We are not aiming to write an encyclopaedia on the subject, nor is this
an attempt to survey the vast literature (including books by Shwartz and
Weiss [91] and Chang [13]) which has evolved on this and related topics.
Instead we present a certain point of view regarding the application of large
deviations theory to queueing problems. Specifically, we will use the ‘con-
tinuous mapping’ approach, which has several benefits.

First, it suggests a style of simple heuristic argument which is easy to
make rigorous.

Second, by basing our results on one key concept, the presentation is
made much simpler. The continuous mapping approach lets us use exactly
the same framework to describe three important scaling regimes: the large
buffer regime; the regime for describing long-range dependence, which has
attracted a good deal of attention in Internet traffic modelling; and the
many-flows regime, which often gives better numerical approximations.

Third, this approach allows us to make very general statements about
how various quantities of interest scale as the system scales, without needing
to make any explicit calculations. In designing networks, it is commonly
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more important to understand such scaling behaviour than it is to obtain
explicit answers. With the help of the continuous mapping approach, we
aim to give an elementary introduction to rare-event scaling phenomena in
queueing theory.

Intended readership

Big Queues targets graduate students in probability and mathematically-
inclined graduate students in engineering, especially those interested in ap-
plications to communications networks. Much of the material is drawn from
lecture courses given by the authors at Uppsala, Cambridge and Bangalore.

The introductory chapters and Chapter 10 on heuristics might also be
of interest to the wider network-engineering research community.

Online material

The website for this book is www.bigqueues.com. It contains corrections,
as well as an ‘active bibliography’ containing links to online versions of the
papers cited (where available) and references to more recent articles.
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Chapter 1

The Single Server Queue

The study of queueing models is an appealing part of applied mathematics
because queues are familiar and intuitive—we face queues nearly every day
and because they can be used to model many different systems.

The simplest queue is a line of customers, in which the customer at the
head of the line receives service from a single server and then departs, and
arriving customers join the tail of the line. Given the interarrival times and
service requirements, we may wish to know how often the server is idle, what
the average waiting time is, how often the number in the queue exceeds some
level, and so on.

Queues can also be used to model problems in insurance. Suppose an
insurance broker starts with a certain amount of capital. Every day a certain
amount of money is paid out in claims (the ‘service’ that day), and a certain
amount of money is paid in in premiums (the ‘arrivals’ that day), and the
capital at the end of the day is the starting capital plus arrivals minus service.
We may wish to know how likely it is that there is insufficient capital to meet
the claims on a given day.

Another application is to packet-based data networks. Data is parcelled
up into packets and these are sent over wires. At points where several
wires meet, incoming packets are queued up, inspected, and sent out over
the appropriate wire. When the total number of packets in the queue (the
‘amount of work’ in the queue) reaches a certain threshold (the ‘buffer size’),
incoming packets are discarded. We may wish to know the frequency of
packet discard, to know how large to make the buffer.

There are many more applications, and many extensions—multiple servers,
different service disciplines, networks of queues, etc. etc.
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Consider now the recursion

Q= (Qi—1+ A —Cy)7,

where t € N (or Z) and Q;, A; and C; € RT, and 2" denotes the positive
part of x, i.e. max(x,0). This is known as Lindley’s recursion. It can be
used to describe customers waiting in a line. Interpret @Q); as the time that
the (t + 1)th customer spends waiting before his service starts, A; as the
service time of the tth customer, and C; as the interarrival time between
customers t and t + 1.

It can also be used to describe the insurance model. Interpret QQ;_; as
the amount of capital at the start of day ¢, and A; as the arrivals and C; as
the service that day.

For the packet data model, consider the modified recursion

Qr = Qi1+ A — Cf]([)}
B

where [z]j = max(min(z, B),0). Interpret Q; as the amount of work in the
queue just after time t € Z, A, as the number of packets that arrive in the
interval (t — 1,t), Cy as the number of packets served at time t, and B as
the buffer size.

For these simple models, the goal of queueing theory is to understand
the qualitative behaviour of the queueing system, when the input sequence
A and the service sequence C are random.

If they are both sequences of i.i.d. random variables, then Q; is a ran-
dom walk constrained to stay positive, and one can obtain certain results
using the theory of random walks and renewal processes. If in addition ei-
ther A or C is a sequence of exponential random variables, one can obtain
further results by considering certain embedded Markov chains. In the lat-
ter setting, even for more complicated queueing models, there is beautiful
mathematical theory which has been remarkably successful as a basis for
many applications. See, for example, the introductory texts [3, 11, 49, 52].

However, in recent years, there has been increasing demand for a the-
ory which is tractable and yet allows one to consider input and service
sequences which exhibit highly non-Markovian characteristics. This is es-
pecially important for modelling internet traffic. In general, this is a tall
order—many of the important structures of classical queueing theory break
down completely—but not so tall as it may seem if one restricts one’s at-
tention to rare events.

For example, in the packet data example, we may want to make the
buffer size sufficiently large that packet discard is a rare event. To quantify
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how large the buffer size needs to be, we need to estimate the probability of
the rare event that the buffer overflows and packets are discarded.

The basic tool for studying rare events is large deviations theory. In this
book we will describe one approach to large deviations theory for queues.
The strength of the theory (and particularly of this approach) is that one can
draw broad conclusions, for systems which are otherwise hard to analyse,
without relying on special-case calculations.

In the remainder of this chapter we focus on the simplest single-server
queueing model and describe how one can apply some elementary large
deviations theory in this context.

1.1 The Single-Server Queueing Model
Consider Lindley’s recursion
Qi =(Qi1+ A = C)F, (1.1)

where t € N (or Z), Q;, A; and C; € RT, and " denotes the positive part
of x.

Note. Throughout this book we will adopt the interpretation that @ is the
amount of work in a queue just after time ¢, A; is the amount of work that
arrives in (t —1,t), and Cy is the amount of work that the server can process
at time ¢.

As we have noted, the recursion can also be interpreted as describing cus-
tomers waiting in a line. Most of our results can be interpreted in this
context.

It is of course unnecessary to keep track of both A; and Cy. We could just
define X; = A; — Cy, A; € R, and look at the recursion Q41 = (Q¢ + X;)™.
Nonetheless, we shall (for the moment) persist in keeping separate account
of service, because it is helpful in building intuition. So we will deal with
the recursion

Q= Qi1+ A —O)F, (1.2)

where C is a fixed constant, and allow A; € R.

This recursion may have many solutions. One way to get around this is
to impose boundary conditions. For example, suppose we are interested in
Qo. If we impose the boundary condition Q_7 = 0, for some T > 0, then
the recursion specifies a unique value for Qp—call it Q T to emphasize the
role of the boundary condition. Now @ T has a simpler form:
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Lemma 1.1 Let S;, t > 1, be the cumulative arrival process: Sy = A_i11 +
-+ + Ag. By convention, let Sy = 0. Then

QaT = max S; —Cs
0<s<T

To prove this, simply apply Lindley’s recursion 7' times, to Qg then to
-1 and so on to Q_741.

One particularly important solution to Lindley’s recursion can be ob-
tained by letting T — oc. The above lemma implies that Q T is increasing
in T, which means that the limit

Qy>° = lim Q57
T—o0
exists (though it may be infinite). The lemma also gives a convenient form:

Qo> =supS; — Cs.
s>0

Of course, there is nothing special about time 0, so we can just as well define

Q- =supS[t,s) —C(s —1t) (1.3)

s>t

where S[t,s) = A_4+---+ A_s4; and S[t,t) = 0. Think of Q_;° intuitively
as the queue size at time —t, subject to the boundary condition that the
queue was empty at time —oo.

This boundary condition is so useful that from now on we will drop the
superscript and write Q_; for QZ{°, where the context is clear.

If the arrival process is stationary, i.e. if (A_4,...,Ap) has the same
distribution as (A_¢—y,...,A_y) for every t and u, then Qg has the same
distribution as @@_; for every t, and this distribution is called the steady
state distribution of queue size.

Note. Why is this boundary condition interesting? Exercise 1.2 shows that if
we impose the boundary condition Q)7 = r and let T' — oo we get the same
answer, for any r, as long as the mean arrival rate is less than the service
rate.

This construction was used by Loynes [60]. He showed that if (A, t € Z) is
a stationary ergodic sequence of random variables with EAy < C, then for
any initial condition @ the sequence Q;, as defined by the recursion (1.2),
converges in distribution as t — oo to a limit which does not depend on Q.
(It is easy to see that Q™ has this distribution.) Moreover, the sequence
(Q; °°, t € Z) defines a stationary ergodic solution to (1.2)
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FExercise 1.1
Show that (1.3) satisfies (1.2). O

Ezercise 1.2
Let Ry z (r) be the queue size at time 0, subject to the boundary condition
that @_7 = r. Show that

RyT(r) = max [Ss - CS:l V(r+Sr—CT).
0<s<T
Deduce that, if S;/t — p almost surely as t — oo for some p < C, then

almost surely
Jim RyT(r)=Qp> for all r.

This shows that we could just as well take any value for the ‘queue size at
time —oo’—it makes no difference to the queue size at time 0. &

A nice example to keep in mind is the following, a discrete-time analog
of the M/M/1 queue.

Example 1.3

Let C = 1 and let the A; be independent and identically distributed: A; = 2
with probability p and A; = 0 with probability 1—p, p < 1/2. Fix Q. Then
the process (Q,t > 0) defined by Lindley’s recursion is a birth-and-death
Markov chain, and it is easy to work out the distribution of the equilibrium
queue length @Q: for g € N,

D \4
P@Q>q) = (ﬂ) : (1.4)
The distribution of the Markov chain converges to this equilibrium distribu-
tion, whatever the value of Qp. Thus, the distribution of Q T converges to
it also as T — oo. So the distribution of Qg (i.e. of @y ) is the equilibrium
distribution of queue size.
We will rewrite (1.4) as

log P(Qo = q) = —dq (1.5)
where 6 = log((1 — p)/p). O

It is a remarkable fact that an approximate version of (1.5) holds quite
generally: for some § > 0,

log P(Qq > q) ~ —dq for large q. (1.6)
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We will frequently refer to the event {Qo > ¢} by saying that ‘the queue size
at time 0 overflows a buffer level q’; then the statement (1.6) is that the
probability of overflow decays exponentially. The rest of this book is about
making such statements precise.

Note. So far we have assumed that the queue size can grow arbitrarily large.
Similar results also apply when the queue size cannot grow beyond a maxi-
mum value, known as the buffer size, as suggested by the following example.
Ezercise 1.4
Suppose the queue has a finite buffer of size B, and we use the modified
version of Lindley’s equation
B
Qi = [Qt—l + A — C]o

where [2]# = max(min(z, B),0). Find the equilibrium distribution of queue
size for the Markov model of Example 1.3.

It is now possible that incoming work is discarded because the buffer is full.
In this model, if Q;—; = B and @; = B then one unit of work was dropped
at time ¢. Let the steady-state probability of this event be p(B). Calculate
p(B), and show that

o1 S
F, g oep(B) =
where again § = log((1 —p)/p). ©

Before we go on to make (1.6) precise, let us consider one application.
If the approximation holds, we can (in principle) estimate the frequency
with which large queues build up, by empirically observing the queue-length
distribution over a relatively short time period: plot the log-frequency with
which each level ¢ is exceeded against ¢, and linearly extrapolate. We have
qualified this statement because actually this is a very challenging statistical
problem. Nevertheless, this ingenious idea, which was first proposed in [19],
has inspired major new developments in the application of large deviation
theory to queueing networks.

We will make (1.6) precise using large deviations theory. In this chapter
we will give an explicit proof in a simple setting, and in later chapters we will
draw on more powerful large deviations techniques to prove more general
results. First, we need to introduce some basic large deviations theory.

1.2 One-Dimensional Large Deviations

Let X be a random variable, and let (X,,n € N) be a sequence of indepen-
dent, identically distributed random variables, each with the same distribu-
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tion as X, and let S,, = X; + -+ + X,,. If EX is finite, then the strong law
of large numbers says that

S

— - EX almost surely
n

as n — o0o.
What about fluctuations of S,,/n around FX? If X has finite variance,
then the central limit theorem says that the sequence of random variables

V(% - %)

n

converges in law to a normal distribution. The central limit theorem thus
deals with fluctuations of S, /n from EX of size O(1/y/n). The probability
of such a fluctuation is O(1).

The theory of large deviations deals with larger fluctuations. In this
book, we will primarily be interested in fluctuations that are O(1) in size;
the probability of such large fluctuations typically decays exponentially in
n.

Ezample 1.5
Suppose X is exponential with mean 1/A. Then for z > 1/,

1 Sii

- 1ogP(F > x) — —(xz — log(Az) — 1) (1.7)
(which is strictly negative). O

It is not straightforward to prove (1.7). Happily, it is easy to find it as
an upper bound, even for general X. Define

A(8) = log Ee®X.

This is known as the cumulant or log moment generating function of X. It is
a function defined on 6 € R, and taking values in the extended real numbers
R* = RU {+00}. Closely related to it is

A*(z) = supfz — A(6).
0eR

This is known as the convex conjugate or Fenchel-Legendre transform of A.
It is a function defined on z € R, and taking values in R*.
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Lemma 1.2 Let X,, and S, be as above, and let A(6) be the log moment
generating function of X. Then

1 Sn
~ > g) < —supbz — . :
- logP( —Z 3:) < 21;%)91 A(6) (1.8)
Proof. For any 6 > 0,
P(Sp/n > z) = E(1[S, — nz > 0])
S E(ee(Sn—nm)) — e—Bane&S’,,,-

This inequality is known as the Chernoff bound. Since the X, are indepen-
dent and identically distributed,

EeSn = (EfXY" = ¢Al0),
Taking logarithms and dividing by n,
% log P(S, > nz) < —(0z — A(6)).
Optimising this bound over  yields the result. O

When z > EX, we show in Lemma 2.6 that taking the supremum over
f € R in A*(x) is the same as taking the supremum over 6 > 0, and so the
right hand side in (1.8) is —A*(x). (A similar bound applies to P(S,, < nz)
for x < EX by considering 6 < 0.)

Ezercise 1.6
Calculate A*(z) in the case where X is exponential with mean 1/\. Check
that your answer agrees with Example 1.5. O

It turns out that Chernoff’s bound is tight, in the sense that it gives the
correct exponential rate of decay of the probability P(S,/n > x). This is
the content of Cramér’s theorem.

Cramér’s Theorem

As before, let X be a random variable and let (X,,,n € N) be independent,
identically distributed random variables each distributed like X, and let
Sp = X1+ -+ X,. Let A(0) be the log moment generating function of X,
and let A*(x) be its convex conjugate.



