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Preface

This book is a detailed report of an experiment to determine if machine
learning may be used to alleviate the ‘expert system bottleneck’
(Feigenbaum, 1977). In order to ensure measurability of the results,
restricted, yet surprisingly complex, chess endgames were used as an
‘experimental test-bench’. Although this is not a book about chess, a level
of detail consistent with an experimental report was necessary, specifically
in Chapters 3, 6 and 7. A good insight into the complexity of the tasks
attempted may be gained by reading these chapters; however, since most
necessary information from these chapters is cross-referenced in the text,
the casual reader need not feel over-burdened.

The book is aimed at a wide variety of readers and the techniques
described have been implemented in commercial rule induction systems
which have been successfully applied to ‘real-world’ problems. The layout
of the book is as follows:

Chapter 1 states the problem to be solved, gives a brief history of
computer induction and sets the scene for the use of chess as an
experimental test-bench.

Chapter 2 describes the programming tools used, namely ID3,
Interactive ID3, CLIP/C, decision-vector generators and database
generators. The chapter starts with a definition of the chess notation used
throughout the rest of the book. Chapter 3 describes the need for, and
process of, database generation for result-checking purposes.

Chapter 4 describes how computer induction was leashed in order
that it might produce usable products. The techniques of ‘structured
induction’ and ‘self-commenting’ (including post-processing of self-
commentary text) are described. Chapter 5 is an overview of the two
experiments performed and their aims.

Chapter 6 describes in detail the three-piece (KPK) endgame
solution that was generated. The latter portion of this chapter is given to
comparing the cost of generating this structured solution (as a program
manufacturing task) with more conventional solutions (unstructured
induction and database lookup).

Chapter 7 contains a detailed description of the four-piece
(KPa7KR) endgame solution that was generated. The latter portion of

vii



viii Preface

this chapter is a report on how structured and unstructured solutions were
compared, their run-time efficiency and accuracy.

Chapter 8 is the most important chapter of the book. It contains a
general discussion on: a) the effectiveness of computer induction;
b) where ‘rules of thumb’ might fit in; c) if a domain-expert exists, the
unsuitability of unstructured induction; d) the measured information
content associated with the expert-supplied structure; e¢) human under-
standability of machine-generated rules (criteria that would allow such a
rule-set, when run, to be called an expert system); f) the nature of rule
languages that would only code human-compatible rules (machine-
generated or otherwise); and g) the conclusions drawn from this work.
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Chapter 1
Introduction

1.1 Motivation

An ‘expert system’ is a computer program that aims to:

1. emulate or outdo one or more human experts in a skilled
diagnostic or other decision-making task; and

2. explain its decisions to the user on demand.

The structure of an expert system can be split into three modules:

®  the inference engine;
e the knowledge-base; and
e the knowledge acquisition module.

The knowledge-base contains a representation of expertise in the domain.
There is also a ‘database’ which contains transient information specific to
the current state of the problem. The inference engine dictates how the
rules in the knowledge-base are applied to the facts present from time to
time in the ‘database’. Database is placed in quotation marks because,
firstly, this usage is misleading — ‘situation model’ would perhaps be
better — and, secondly, ‘database’ is used later for something different.
Use of the knowledge acquisition module usually requires a partnership
between a computer scientist (knowledge engineer) and a specialist
(domain expert) in the given field. Sometimes these are one and the same
person.

To make an expert system one must choose (or develop) an
inference engine and, consulting a domain expert, fill the knowledge-base
with information of a type which can be called ‘prescriptive’. This
typically has the form of ‘if-then’ rules, each with associated degrees of
confidence. For example, if (with some degree of certainty) the car
battery is flat then conclude (with some measure of confidence) that the
fan belt is loose. Some expert domains are such that a system with all
confidence measures set to 0 or 1 (false or true) is adequate.

The choice of inference engine dictates the user—interface charac-
teristics and defines some ordering over the information contained in the

1



2 Structured Induction in Expert Systems

knowledge-base. Designing an inference engine is now well understood.
At first glance, knowledge gathering from the domain expert may also not
seem to be particularly hard. But it has become increasingly apparent
that:

‘the acquisition of domain knowledge [is] the bottleneck
problem in the building of applications-oriented intelligent
agents’. (Feigenbaum, 1977)

Even with domain experts who are regularly available (by no means the
normal situation since by their nature their time is in heavy demand) one
rule per man-day debugged and installed in the knowledge-base is
reckoned adequate progress.

What is so difficult about getting correct rules out of an expert,
since he is after all an expert? To answer this question it is important to
realize that his expertise does not include the ability to explain the
reasons for his professional decisions. When a chemical company hires a
mass spectroscopist it is renting his ability to interpret spectra, not to
explain how he makes the interpretations. Hence he is not to be regarded
as necessarily expert in this second activity. Indeed in this activity he is
not even in the normal sense a professional. Experts typically cannot
describe their own reasoning processes. They have to a large extent
forgotten how they learned their trade, which tends to be largely based
on experience assimilated into a form of intuitive ‘know-how’. Moreover,
domain experts are seldom computer scientists; hence they do not know
how to install rules in a given software system nor do they know the form
the rules should take for a particular inference engine. A direct interface
between domain expert and expert system is needed. At present the
interface is via the knowledge engineer. The knowledge engineer talks to
the expert and extracts rules from the explanations he supplies,
converting them to machine-acceptable form and pointing out inconsis-
tencies as they are discovered. This is the long, slow process of rule
acquisition referred to before. The indications of the present work are
that for moderately complex tasks complete success can never be
achieved by this method alone, i.e. without use of rule induction. It is
significant that the largest operational rule-bases to be built without using
induction have not yet much exceeded 2000 rules. Nievergelt (1977)
showed that a grand-master’s store of chess patterns amounts to some
50 000 in number. Although one pattern is not always equivalent to one
rule, the implications for the construction of expert systems for problems
of grand-master chess complexity are clear.

However, there is one facet of the expert’s skill that until recently
has not been utilized: he is able to act as a skilled source of relevant
examples to train an apprentice. If this skill could be tapped and fed into
an expert system equipped with the power to generalize from examples
it should alleviate the knowledge-gathering bottleneck. Michalski



Introduction 3

and Chilausky (1980) have shown that it is possible by the use of
mechanized inductive learning to build a complete expert system from a
file of examples. Moreover, the inductively built expert system was not
only much cheaper to synthesize than a comparable system hand-built by
conventional techniques but also showed strikingly superior accuracy of
run-time decisions. The research, which was on diagnosing diseases in soy
beans, showed that, at this level of problem complexity, the induced rules
were understandable and mentally checkable by human experts in the test
domain. These issues of cognitive compatibility are central and are more
fully discussed in Section 1.6.

Another feature usually associated with expert systems is that of
‘knowledge refinement’. The information content of an active knowledge-
base tends to increase as it is tuned and rules are added. It becomes an
increasingly accurate store of expert chosen rules that with very little
reformatting can be turned into a tutorial manual.

1.2 Historical background

The following selection from published contributions on machine learning
over the past 25 years is focused on just those which point to the
possibility of incorporating learning in expert systems software. We omit
work like that of Samuel (1957) based on the tuning of parameters of a
pre-specified description as opposed to the structural modification of
descriptions or the generation of new descriptions.

Hunt ez al.’s (1966) CLS (Concept Learning System) was the first
to generate rules automatically from examples. These generalizations
were produced in the form of decision trees, functionally equivalent to
compound conditional statements.

Michie and Chambers’ (1968, 1969) real-time system BOXES
‘learned’ to balance a pole on a moving cart. The system modified a set of
225 production rules on the basis of trial runs with a simulation displayed
on a video monitor. The system could acquire expertise either in stand-
alone mode from its own trial and error, or by observing the real-time
decisions of an expert trained on the control task.

Winston (1970) and Barrow and Popplestone (1971) independently
introduced relational graphs (‘semantic nets’) to describe visual scenes.
Their programs modified these visual descriptions from example scenes.

Michalski, together with Chilausky and Jacobsen (Chilausky et al.,
1976), showed cost-benefit advantages, both in the labour of rule-base
construction and in run-time performance, of induction over traditional
dialogue methods for building an expert rule-base. Michalski later (1980)
took his soy bean diagnosis a stage further with new material and multiple
sources of expert knowledge for a more detailed comparison. The
induced expert system again outperformed an expert system generated by



