'STRUCTURED INDUCTION
IN EXPERT SYSTEMS

Alen D. Shapiro

e 8960167

Structured Induction

In Expert Systems

Alen D. Shapiro

Cogensys Corporation (formerly
at the Turing Institute)

MARRNBan

E8960167

- TURING INSTITUTE PRESS
- in association with

ADDISON-WESLEY PUBLISHING COMPANY
\A4 Wokingham, England - Reading, Massachusetts

Menlo Park, California - New York - Don Mills, Ontario

Amsterdam - Bonn - Sydney - Singapore - Tokyo

Madrid - Bogota - Santiago - San Juan

© 1987 Addison-Wesley Publishers Limited.
© 1987 Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without prior written
permission of the publisher.

The programs in this book have been included for their instructional value. They
have been tested with care but are not guaranteed for any particular purpose. The
publisher does not offer any warranties or representations, nor does it accept any
liabilities with respect to the programs.

Cover design by Crayon Design, Henley-on-Thames.
Typeset by Columns, Reading.

Printed in Great Britain by The Bath Press, Avon.
First printed 1987

British Library Cataloguing in Publication Data
Shapiro, Alen D.
Structured induction in expert systems.
(Turing Institute Press).
1. Expert systems (Computer science)
I. Title II. Turing Institute
006.3'3 QA76.76.E95

ISBN 0-201-17813-3

Library of Congress Cataloging-in-Publication Data
Shapiro, Alen D., 1956

Structured induction in expert systems.

(The Turing Institute Press)

Bibliography: p.

Includes index.

1. Expert systems (Computer science) 2. Electronic
data processing — Structured techniques. I. Title.
II. Series: Turing Institute Press (Series)
QA76.76.E95549 1987 006.3'3 87-14404

ISBN 0-201-17813-3 (Addison-Wesley)

Artificial Intelligence Tiﬂes from Addison-Wesley

. AI VIDEO COURSES

Davis Knowledge-Based Expert Systems: Planning and Implementation

Waterman & Quinlan Knowledge Acquisition: The Key to Building Expert
Systems

Winston * Artificial Intelligence: Foundations and Applications

Al MASTERS VIDEOS

Brady Machine Vision: The Advent of Intelligent Robots
 Kowalski & Kriwaczek Logic Programming: Prolog and its Applications
Michie & Bratko Expert Systems: Automating Knowledge Acquisition

AI BOOKS

Amble Logic Programming and Knowledge Engineering
Anderson, Corbett & Reiser Essential LISP

Barr, Cohen & Feigenbaum (Eds.) The Handbook of Artificial Intelligence
(in 3 volumes)

Bratko Prolog Programming for Artificial Intelligence

Brownston, Farrell, Kant & Martin Programming Expert Systems in OPS5: an
Introduction to Rule-Based Programming

Buchanan & Shortliffe Rule-Based Expert Systems: The MYCIN Experiments of
the Stanford Heuristic Programming Project

Burton & Shadbolt POP-11 Programming for Artificial Intelligence
Charniak & McDermott Introduction to Artificial Intelligence

Clancey & Shortliffe (Eds.) Readings in Medical Artificial Intelligence: The First
Decade

Conlon Learning Micro-Prolog

Craig Introduction to Robotics: Mechanics and Control

Fischler & Firschein Intelligence: The Eye, The Brain and The Computer
Gale (Ed.) Artificial Intelligence and Statistics

Giannesini, Kanoui, Pasero & van Caneghem Prolog

Cregory Parallel Logic Programming in PARLOG: The Language and its
Implementation

Hayes-Roth, Waterman & Lenat (Eds.) Building Expert Systems

Al BOOKS (continued)

Jackson Introduction to Expert Systems

Kandel Fuzzy Mathematical Techniques with Applications

Kearsley (Ed.) Artificial Intelligence and Instruction: Applications and Methods
Klahr & Waterman (Eds.) Expert Systems: Techniques, Tools and Applications

Manna & Waldinger The Logical Basis for Computer Programming. Volume 1:
Deductive Reasoning

Marcus Prolog Programming: Applications for Database Systems, Expert
Systems and Natural Language Systems

Pearl Heurstics: Intelligent Search Strategies for Computer Problem Solving
Rogers A Prolog Primer
Rogers A Turbo Prolog Primer

Sager Natural Language Information Processing: A Computer Grammar of
English and its Applications

Sager, Friedman & Lyman Medical Language Processing: Computer
Management of Narrative Data

Silverman (Ed.) Expert Systems for Business
Sowa Conceptual Structures: Information Processing in Mind and Machine

Walker (Ed.), McCord, Sowa & Wilson Knowledge Systems and Prolog: A
Logical Approach to Expert Systems and Natural Language Processing

Waterman A Guide to Expert Systems

Wilensky Planning and Understanding: A Computational Approach to Human
Reasoning

Winograd Language as a Cognitive Process. Volume 1: Syntax
Winston Artificial Intelligence, 2nd Edition
Winston & Horn LISP, 2nd Edition

Structured Induction
in Expert Systems

Turing Institute Press

Managing Editor Dr Judith Richards
Academic Editor Dr Peter Mowforth

The Turing Institute, located in Glasgow,
Scotland, was established in 1983 as a not-for-
profit company, named in honour of the late
Alan M. Turing, the distinguished British
mathematician and logician whose work has had
a lasting influence on the foundations of modern
computing.

The Institute offers integrated research and
teaching programmes in advanced intelligent
technologies — in particular, logic programming,
computer vision, robotics and expert systems. It
derives its income from research and training
contracts, both governmental and industrial, and
by subscription from its Industrial Affiliates. It
assists Affiliates with the transfer of technology
from research to application, and provides them
with training for their technical staff, a wide
range of software tools, and a comprehensive
library and information service.

The Turing Institute is an Academic Associate of
the University of Strathclyde, and its research
staff work closely with different departments of
the University on a variety of research
programmes.

Other titles published in association with the
Turing Institute Press

Applications of Expert Systems
J. Ross Quinlan (Editor)

Knowledge-Based Programming
Enn Tyugu

This book is dedicated to my wife Merryl who has stood by me
through thick and thin, triumph and defeat, keeping me sane and
showing me the meaning of love. Also to my parents Rene and
Harvey for whose confidence and support I will always be
grateful.

Preface

This book is a detailed report of an experiment to determine if machine
learning may be used to alleviate the ‘expert system bottleneck’
(Feigenbaum, 1977). In order to ensure measurability of the results,
restricted, yet surprisingly complex, chess endgames were used as an
‘experimental test-bench’. Although this is not a book about chess, a level
of detail consistent with an experimental report was necessary, specifically
in Chapters 3, 6 and 7. A good insight into the complexity of the tasks
attempted may be gained by reading these chapters; however, since most
necessary information from these chapters is cross-referenced in the text,
the casual reader need not feel over-burdened.

The book is aimed at a wide variety of readers and the techniques
described have been implemented in commercial rule induction systems
which have been successfully applied to ‘real-world’ problems. The layout
of the book is as follows:

Chapter 1 states the problem to be solved, gives a brief history of
computer induction and sets the scene for the use of chess as an
experimental test-bench.

Chapter 2 describes the programming tools used, namely ID3,
Interactive ID3, CLIP/C, decision-vector generators and database
generators. The chapter starts with a definition of the chess notation used
throughout the rest of the book. Chapter 3 describes the need for, and
process of, database generation for result-checking purposes.

Chapter 4 describes how computer induction was leashed in order
that it might produce usable products. The techniques of ‘structured
induction’ and ‘self-commenting’ (including post-processing of self-
commentary text) are described. Chapter 5 is an overview of the two
experiments performed and their aims.

Chapter 6 describes in detail the three-piece (KPK) endgame
solution that was generated. The latter portion of this chapter is given to
comparing the cost of generating this structured solution (as a program
manufacturing task) with more conventional solutions (unstructured
induction and database lookup).

Chapter 7 contains a detailed description of the four-piece
(KPa7KR) endgame solution that was generated. The latter portion of

vii

viii Preface

this chapter is a report on how structured and unstructured solutions were
compared, their run-time efficiency and accuracy.

Chapter 8 is the most important chapter of the book. It contains a
general discussion on: a) the effectiveness of computer induction;
b) where ‘rules of thumb’ might fit in; c) if a domain-expert exists, the
unsuitability of unstructured induction; d) the measured information
content associated with the expert-supplied structure; e¢) human under-
standability of machine-generated rules (criteria that would allow such a
rule-set, when run, to be called an expert system); f) the nature of rule
languages that would only code human-compatible rules (machine-
generated or otherwise); and g) the conclusions drawn from this work.

Acknowledgements

Part of the work described in this book was done while the author was in
receipt of an SRC Studentship in association with a project funded by
SRC grant no. GR/A/80327 made to Professor Donald Michie for
software and microelectronic aids for design and implementation of
expert systems. The author acknowledges provision of facilities from the
University of Edinburgh, Intelligent Terminals Ltd, the Turing Institute
and Citicorp/TTI and expresses his thanks to Professor Donald Michie for
his encouragement and helpful suggestions in particular as regards the
treatment of information measurement followed in Section 8.4. The
author also wishes to express his thanks to Dr Timothy Niblett for his
help and for the provision of the KPK and KPKR databases and to Ken
Thompson for providing the KQKR and KRKR databases. Thanks also
to former Scottish Chess Champion Danny Kopec for acting as an expert
in providing examples for the KPKR domain and to Rob Gordon and
Marcel Schoppers for their invaluable help with the early stages of
KPKR. The author also acknowledges financial assistance from Inter-
national Computers Ltd and the General Electric Company.

Part of Chapter 6 has appeared in Advances in Computer Chess 3 (Ed.
M. R. B. Clarke) Shapiro and Niblett (1982). Most of the work described
in this book was submitted in partial requirement for the degree of Ph.D.
in Machine Intelligence (Shapiro, 1983). Part of Chapter 4 has appeared
in Advances in Computer Chess 4 (Ed. D. F. Beal) Shapiro and Michie
(1986).

The author and publishers would like to thank the IBM Journal of
Research and Development for permission to reproduce an extract from
A. Newell, J. C. Shaw and H. A. Simon’s ‘Chess-playing programs and
the problem of complexity’, IBM J. Res. Dev. 2, 320-335. Copyright 1958
by International Business Machines Corporation; reprinted with per-
mission.

UNIX™ is a registered trademark of AT&T in the U.S.A. and other countries.
DEC 10 (KL10), PDP 11/24 and PDP 11/34 are trademarks of Digital Equipment
Corporation.

Contents

Preface

Acknowledgements

Chapter 1

1.1
1.2
1.3
1.4
1.5
1.6

Chapter 2

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Chapter 3
3.1
3.2
33
3.4
3.5

Chapter 4

4.1
4.2
4.3

Introduction

Motivation
Historical background
Nature of reasoning

The products of induction: friendly versus unfriendly

Choice of chess as experimental test-bench
The hypothesis to be tested

Programming Tools

Conventions used

Computing and programming environment
ID3 induction program

Interactive ID3

CLIP/C parallel array emulator
Decision-vector generators

Database generators

Database Generator

The ‘database’ problem

Principles of standard backup database generation
Difficulties and pitfalls

The checking problem

Databases generated for the present work

Techniques in the Use of Computer Induction

Structured induction
Self-commenting
Post-processing self-commentary texts

vii

ix

O ON N W= —_

10

10
10
11
15
18
21
22

27
27

- 28

30
30
32

33

33
36
39

xi

xii Contents

Chapter 5 Plan of the Experiments 44
5.1 The first experiment 44
5.2 The second experiment 45

Chapter 6 KPK Experiment 47
6.1 Introduction to the topic 47
6.2 The play of KPK 47
6.3 A top-level strategy for KPK 50
6.4 Previous computer work 51
6.5 Structured induction of decision rules 51
6.6 KPK problem decomposition tree 52
6.7 Subproblem 1: pawn-can-run 52
6.8 Subproblem 2: rookpawn 54
6.9 Subproblem 3: get-to-main-pattern 56

6.10 Subproblem 4: rank56 58
6.11 Subproblem 5: rank7 59
6.12 Top-level solution for KPK 60
6.13 Unstructured induction of decision rule 61
6.14 Costs associated with decision rules 62
6.15 Programmer costs 66
6.16 Structural features of rules 66

Chapter 7 KPa7KR Experiment 68
7.1 Introduction to the topic 68
7.2 Previous computer work 70
7.3 Structured induction of decision rule 71
7.4 KPa7KR problem decomposition tree 74
7.5 Subproblem (level 1): pa7 74
7.6 Subproblem (level 2.1): dg 76
7.7 Subproblem (level 2.2): ds 78
7.8 subproblem (level 3.1): thrmt 81
7.9 Subproblem (level 3.2): wka8d 82

7.10 Subproblem (level 3.3): wkchk 84
7.11 Subproblem (level 3.4): dblat 86
7.12 Subproblem (level 4.1): okskr 88
7.13 Subproblem (level 4.2): btogs 91
7.14 Unstructured induction of decision rule 92
7.15 Generation of unstructured decision rules using structured

training set 96
7.16 Discussion of results 97
7.17 Programmer costs 99

Chapter 8 Discussion 100
8.1 Database as oracle versus expert as oracle 100
8.2 Meta-knowledge (old wives’ tales and rules of thumb) 102

8.3 Structured induction versus unstructured induction 103

Contents xiii

8.4 Nature of rule languages for computer induction
8.5 Conclusions
8.6 Further directions

References

Appendix A An Unstructured KPK BTM WFW/not WFW Decision Tree

Appendix B List of Chess Books Consulted by the Author for KPa7ZKR

Appendix C Listing of btogs Prior to its Being Made into a Subproblem

Appendix D An Unstructured KPa7ZKR WTM WFW/not WFW
Decision Tree

Appendix E Syntax of CDL-1

Appendix F WFW/not WFW Advice Text for KPa7KR WTM

Index

111
112
112

114

117

119

120

122

124

126

131

Chapter 1
Introduction

1.1 Motivation

An ‘expert system’ is a computer program that aims to:

1. emulate or outdo one or more human experts in a skilled
diagnostic or other decision-making task; and

2. explain its decisions to the user on demand.

The structure of an expert system can be split into three modules:

® the inference engine;
e the knowledge-base; and
e the knowledge acquisition module.

The knowledge-base contains a representation of expertise in the domain.
There is also a ‘database’ which contains transient information specific to
the current state of the problem. The inference engine dictates how the
rules in the knowledge-base are applied to the facts present from time to
time in the ‘database’. Database is placed in quotation marks because,
firstly, this usage is misleading — ‘situation model’ would perhaps be
better — and, secondly, ‘database’ is used later for something different.
Use of the knowledge acquisition module usually requires a partnership
between a computer scientist (knowledge engineer) and a specialist
(domain expert) in the given field. Sometimes these are one and the same
person.

To make an expert system one must choose (or develop) an
inference engine and, consulting a domain expert, fill the knowledge-base
with information of a type which can be called ‘prescriptive’. This
typically has the form of ‘if-then’ rules, each with associated degrees of
confidence. For example, if (with some degree of certainty) the car
battery is flat then conclude (with some measure of confidence) that the
fan belt is loose. Some expert domains are such that a system with all
confidence measures set to 0 or 1 (false or true) is adequate.

The choice of inference engine dictates the user—interface charac-
teristics and defines some ordering over the information contained in the

1

2 Structured Induction in Expert Systems

knowledge-base. Designing an inference engine is now well understood.
At first glance, knowledge gathering from the domain expert may also not
seem to be particularly hard. But it has become increasingly apparent
that:

‘the acquisition of domain knowledge [is] the bottleneck
problem in the building of applications-oriented intelligent
agents’. (Feigenbaum, 1977)

Even with domain experts who are regularly available (by no means the
normal situation since by their nature their time is in heavy demand) one
rule per man-day debugged and installed in the knowledge-base is
reckoned adequate progress.

What is so difficult about getting correct rules out of an expert,
since he is after all an expert? To answer this question it is important to
realize that his expertise does not include the ability to explain the
reasons for his professional decisions. When a chemical company hires a
mass spectroscopist it is renting his ability to interpret spectra, not to
explain how he makes the interpretations. Hence he is not to be regarded
as necessarily expert in this second activity. Indeed in this activity he is
not even in the normal sense a professional. Experts typically cannot
describe their own reasoning processes. They have to a large extent
forgotten how they learned their trade, which tends to be largely based
on experience assimilated into a form of intuitive ‘know-how’. Moreover,
domain experts are seldom computer scientists; hence they do not know
how to install rules in a given software system nor do they know the form
the rules should take for a particular inference engine. A direct interface
between domain expert and expert system is needed. At present the
interface is via the knowledge engineer. The knowledge engineer talks to
the expert and extracts rules from the explanations he supplies,
converting them to machine-acceptable form and pointing out inconsis-
tencies as they are discovered. This is the long, slow process of rule
acquisition referred to before. The indications of the present work are
that for moderately complex tasks complete success can never be
achieved by this method alone, i.e. without use of rule induction. It is
significant that the largest operational rule-bases to be built without using
induction have not yet much exceeded 2000 rules. Nievergelt (1977)
showed that a grand-master’s store of chess patterns amounts to some
50 000 in number. Although one pattern is not always equivalent to one
rule, the implications for the construction of expert systems for problems
of grand-master chess complexity are clear.

However, there is one facet of the expert’s skill that until recently
has not been utilized: he is able to act as a skilled source of relevant
examples to train an apprentice. If this skill could be tapped and fed into
an expert system equipped with the power to generalize from examples
it should alleviate the knowledge-gathering bottleneck. Michalski

Introduction 3

and Chilausky (1980) have shown that it is possible by the use of
mechanized inductive learning to build a complete expert system from a
file of examples. Moreover, the inductively built expert system was not
only much cheaper to synthesize than a comparable system hand-built by
conventional techniques but also showed strikingly superior accuracy of
run-time decisions. The research, which was on diagnosing diseases in soy
beans, showed that, at this level of problem complexity, the induced rules
were understandable and mentally checkable by human experts in the test
domain. These issues of cognitive compatibility are central and are more
fully discussed in Section 1.6.

Another feature usually associated with expert systems is that of
‘knowledge refinement’. The information content of an active knowledge-
base tends to increase as it is tuned and rules are added. It becomes an
increasingly accurate store of expert chosen rules that with very little
reformatting can be turned into a tutorial manual.

1.2 Historical background

The following selection from published contributions on machine learning
over the past 25 years is focused on just those which point to the
possibility of incorporating learning in expert systems software. We omit
work like that of Samuel (1957) based on the tuning of parameters of a
pre-specified description as opposed to the structural modification of
descriptions or the generation of new descriptions.

Hunt ez al.’s (1966) CLS (Concept Learning System) was the first
to generate rules automatically from examples. These generalizations
were produced in the form of decision trees, functionally equivalent to
compound conditional statements.

Michie and Chambers’ (1968, 1969) real-time system BOXES
‘learned’ to balance a pole on a moving cart. The system modified a set of
225 production rules on the basis of trial runs with a simulation displayed
on a video monitor. The system could acquire expertise either in stand-
alone mode from its own trial and error, or by observing the real-time
decisions of an expert trained on the control task.

Winston (1970) and Barrow and Popplestone (1971) independently
introduced relational graphs (‘semantic nets’) to describe visual scenes.
Their programs modified these visual descriptions from example scenes.

Michalski, together with Chilausky and Jacobsen (Chilausky et al.,
1976), showed cost-benefit advantages, both in the labour of rule-base
construction and in run-time performance, of induction over traditional
dialogue methods for building an expert rule-base. Michalski later (1980)
took his soy bean diagnosis a stage further with new material and multiple
sources of expert knowledge for a more detailed comparison. The
induced expert system again outperformed an expert system generated by

