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Foreword

Speech by Toyosaburo Taniguchi

Dr. Kubo, Chairman, Distinguished Guests, and Friends,

I am very happy, pleased and honored to be here this evening with so
many distinguished guests, friends, and scholars from within this country
and from different parts of the world. The Taniguchi Foundation wishes to
extend a warm and sincere welcome to the many participants of the Ninth
International Symposium on the Theory of Condensed Matter, which se-
ries was inaugurated eight years ago through the strenuous efforts of Dr.
Rvogo Kubo, who is gracing us today with his presence.

We are deeply indebted to Dr. Kubo, Dr. Suzuki, and their associates,
who have spent an enormous amount of time and effort to make this
particular symposium possible. We are convinced that the foundation
should not be considered as what makes our symposium a success. The
success is entirely due, I feel, to the continuous efforts of the Organizing
Committee and of all those who have lent their support to this program.
In this sense, your words of praise about the symposium, if any, should be
directed to all of them.

So far, I have met in person a total of 62 participants in this Division
from 12 countries: Argentina, Belgium, Canada, Denmark, the Federal
Republic of Germany, France, Ireland, Israel, Rumania, Switzerland, the
United Kingdom, and the United States of America, with 133 participants
from Japan. Those friends | have been privileged to make, I shall always
treasure.

Whenever I meet with the participants in our symposia, both young
and old, I am deeply impressed by the unselfish and sincere dedication
they display in pursuing their vocation. To those younger people who
are made welcome by world-famous scholars as their friends, we offer our
hopes that even after climbing the ladder of academic fame within, say,
the next 10, 20 or 30 years, you will join forces, and help to forge closer
bonds of friendship and cooperation in a manner that will make a major
contribution not only to academia but also to permanent world peace.
And, it is our hope that our symposia be continued as long as the fund

\'



permits, for several more years at least.

In conclusion, we sincerely trust that all the participants, both Japa-
nese and foreign, will return home with pleasant memories of the sympo-
sium and of our enjoyable time together.

Thank you.
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Preface

This volume contains papers presented at the Ninth Taniguchi Symposium
on the Theory of Condensed Matter, which was held 14-18 November,
1986, at Susono, Japan. The topic of the symposium was “Quantum
Monte Carlo Methods in Equilibrium and Nonequilibrium Systems”.

The field of quantum Monte Carlo methods in equilibrium and nonequi-
librium systems, namely quantum statistical Monte Carlo methods, has
been studied only for about ten years. Quite recently many physicists
began to work in this field, partly because larger-scale and higher-speed
computers are now available, and partly because many important problems
cannot yet be solved analytically. The basic idea of quantum statistical
Monte Carlo methods is to transform the relevant d-dimensional quantum
system into the corresponding (d+1)-dimensional classical system, using
the generalized Trotter formula.

This volume consists of three parts. In the first paper of Part I, quan-
tum statistical Monte Carlo methods are reviewed generally with great
emphasis on methodology and some mathematical aspects such as the
convergence and correction of the so-called ST transformation. The fol-
lowing four papers treat some general aspects of quantum systems, which
are related to the quantum Monte Carlo approach. Part Il contains ten
papers which treat quantum spin systems using quantum statistical Monte
Carlo methods, and two papers which treat quantum spin glasses. The
five papers in Part III treat fermion systems, including nuclear systems.

The present Taniguchi Symposium was supported by the Taniguchi
Foundation. Mr. Toyosaburo Taniguchi, who is the former president of
Toyobo Co., Ltd., has supported various academic activities in the natural
and human sciences for many years. His speech delivered at the reception
in Kyoto after the symposium appears as the Foreword to this volume to
illustrate the philosophy behind this support.

On behalf of all the participants we would like to express our hearty
thanks to Mr. Taniguchi and the members of the Taniguchi Foundation.

Tokyo, 1 Masuo Suzuki
March 1987
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General Aspects of Quantum
Monte Carlo Methods



General Review of Quantum Statistical
Monte Carlo Methods

M. Suzuki

Department of Physics, Faculty of Science, University of Tokyo,
Hongo, Bunkyo-ku, Tokyo 113, Japan

1. INTRODUCTION

The main purpose of the present paper is to explain the methodology of
quantum statistical Monte Carlo Simulations to those who are coming into
this rather new field of quantum Monte Carlo at finite temperatures.

Until quite recently, physics has been classified into the two
categories, namely theoretical physics and experimental physics. Now
there exists another category, so-called computational physics mainly
based on computer simulations with use of Monte Carlo methods [1-5]. The
classical Monte Carlo method was introduced by Metropolis et al. [6].
Numerical simulations of quantum systems at zero temperature were started
in rather early days after quantum mechanics was established [5]. There
have been proposed many methods such as the Green-function Monte-Carlo
method by Kalos [7], variational Monte Carlo methods [5], and diffusion
equation Monte Carlo methods [5], in order to study quantum-mechanical
properties at zero temperature.

However, quantum Monte Carlo at finite temperatures had been believed
to be quite difficult except a special symmetric system of the isotropic
Heisenberg model [8], until the present author [9-12] proposed a general
approach of "quantum statistical Monte Carlo" in which d-dimensional
quantum systems are mapped onto (d+1)-dimensional classical systems using
the following Trotter-like formula of exponential operators [9-12]:

A 4+A ++--+A A./n A,/n A /n
e 12 P = Alg(e 1 e 2 ceep P o (1.1)

The above general approach was first applied to quantum spin systems by
Suzuki, Miyashita and Kuroda [11,13]. Barma and Shastry [14] applied this
general idea to find equivalent classical models of one-dimensional fermi
lattices. Hirsch et al. [15] performed explicitly Monte Carlo simulations
in fermi systems. On the other hand, De Raedt and Lagendijk [16,17]
studied extensively quantum spin, fermi and bose systems, and polaron
problems, using the above general transformation method (1.1).

Many numerical investigations of the validity and convergence of the
above general approach based on (1.1) have been reported by De Raedt-De
Raedt [18], Wiesler [19], Cullen-Landau [20]. There have been reported
many other interesting applications of the above idea to S = 1/2 spin
systems by Satija-Wysin-Bishop [21], Marcu-Muller-Schmatzer [22],
Sakaguchi-Kubo-Takada [23], to higher-spin systems by Takano [24] and
Marcu-Wiesler [25], and to fermi gas by Takahashi and Imada [26]. Kolb
[27] performed Monte Carlo renormalization group calculations in the two-



dimensional gquantum transverse Ising model by transforming it to the
corresponding three-dimensional Ising model, as was suggested by the
present author [28]. Betsuyaku [29] performed calculations of the linear
quantum spin systems numerically by using the quantum transfer-matrix
method [29,30]. Tsuzuki [31] applied this transfer-matrix method to the
case of higher-spin chains using the cluster decomposition method [12,30].
Quite recently Nagai et al. [32] applied the above general method to the
transverse Ising model.

In Section 2, basic ideas of the quantum statistical Monte Carlo will
be explained in detail. Namely we discuss generalized Trotter-Tike
approximations, decomposition formulae of exponential operators and
convergence theorems [33], and moment- and cumulant-expansions of sliced
exponential operators. The equivalence theorem by the present author
[10,12] will be also reviewed in Section 2. In Section 3, the thermofield
quantum Monte Carlo method [34-39] will be presented. In Section 4, the
thermofield transfer-matrix methods will be discussed. The decomposition
of the Trotter-like formula (1.1) is not unique and consequently it has
the merit that cluster decompositions are also applicable in (1.1), as
will be discussed in Section 6. In Section 7, the quantum Monte Carlo
renormalization approach will be discussed. In Section 8, quantum spin
glasses will be discussed briefly using some equivalent classical random
spin systems. In Section 9, Fisher's finite-size scaling law is discussed
in connection with Monte Carlo simulations. A finite-Trotter-number
scaling ansatz is proposed in Section 10. This is originally proposed in
the present paper. In Section 11, correlation identities by the present
author [41] will be presented in a completely general form with possible
applications to testing of Monte Carlo calculations. They take the
following general form

<fg> = <f«q > (1-2)

for arbitrary classical functions f and g under the conditions that f and
g do not contain common variables that <g> is the canonical average of g
over the partial Hamiltonian J,; which is connected to the variables
contained in g. This is a complete generalization of Callen's identity
[42]. These correlation identities are very useful to test the accurary
of Monte Carlo calculations, as was discussed by Mouritsen [3]. In
Section 12, symmetry properties of Kubo's canonical correlations with
respect to Trotter's number n will be studied in detail. In Section 13,
quantum dynamics via Monte Carlo will be discussed. In Section 14,
summary and future problems will be given.

2. GENERAL THEORY OF QUANTUM MONTE CARLO

2.1 Generalized Trotter-like Approximations

As was briefly mentioned in Section 1, the quantum statistical Monte Carlo
method [10-13] is based on Trotter's formula [43] or the generalized
Trotter formula (1.1). It is convenient to introduce here the following
extremely generalized Trotter-like formula [44,45]

S (e L) (2.1)

where the approximant fm[—(T/n)Bﬂ] satisfies the following condition



B8R _ F I~ 1) + 0(55) (2.2)

for large n, with some positive integer m.

2.2 Decomposition Formulae of Exponential Operators and Convergence
Theorems

Now we have the following theorem concerning the above generalized
Trotter-like decomposition.

Theorem 1 [12]: With the condition (2.2), we have

A (F [~ 18AD" + 0(—). (2.3)
n

or more explicitly

1R ) o R - ey,

where
M= max{nexp(- %Bz)ll.ﬂfm[— %B”]I} (2.5)

These are very useful in performing quantum Monte Carlo simulations of
many-body quantum systems in equilibrium, as shown in previous papers
[10-32].

The partition function of the relevant system described by the
Hamiltonian is given by

2 -1 e BH Te(f [-BAD" + 0(—1). (2.6)
n

A more non-uniformly generalized form of Eq. (2.3) is given by

s -8 -85 H  -6,80H 8, H
e = e e perce 2

= f [-OJIf [-(at Y-+ (-t ) + 0@y, (2.7)
where
E[q“ax{&Ti ﬂTno g 6T0] al‘ld &T'_‘B-Bn. ﬂTn=Bn“8n..'|' =y 6T0=BO' (2.8)

There are many different ways to express the approximate operator
fm[—B;CJn] explicitly, and to evaluate Tr(fy[-B}/n])" numerically, as in
[10-32]. Many people have been trying to find new approximate expressions
of fnl-Bf/n] and efficient evaluation methods of them in the above general
scheme of generalized Trotter-like approximations (2.3).

For example, we have [9,10,12,33]
FolAy+hpt—+ay] = eMlef2efo (2.9)



These Trotter-like approximations have been used frequently [10-33].

It will be instructive to summarize here some useful decomposition
formulae.

Theorem 2 [33]: For any set of operators {Ai} in a Banach algebra (i.e..
normed space), "

Iexp(JE1AJ)—(3E]eG/n]A§)n" < ,:,H(JEkI[AJ.Ak]") exp( 4 | ) (2.10)

with an arbitrary positive integer p.

In particular, for p=2, we obtain Trotter's formula

A+B )
e = Alm(e

Theorem 3 [33]: For any operators A and B in a Banach algebra,

Aln B/nyn (2.11)

"eA+B B (eAlzn eB/n eA/Zn ) ’l _2 Z(A B), (2.12)
where
8,(AB) = 1t[| [[A.BL.BI[| + L JUIABLAI[Y x expCJAf+BlD- (2.13)

Now we discuss higher order decompositions of the general ex?onent1a1
operator exp(Aj+Az+---+Ap). For this purpose, we may find fm({
which satisfies the condition

exp(1 J§ A) = f ({~A 1) + o<—). (2.18)

according to the generalized Trotter-Tike formula (2.1) with (2.2). It is
convenient to note that the (m+1)th approximant defined by

2 -m
fm](i'ﬁ)’ewn eEi/n eCz/n e Cis (2.15)

satisfies the condition (2.14), if the coefficients {CJ} are given by [9]

1[B Al, C3 = 1[c2.A+2B]. : (2.16)

Thus, we can obtain formally any higher order decompositions of the
exponential operator (2.14).

Up to now, we have discussed the convergence of decomposed operators.
We are, however, practically interested in the trace of such decomposed
operators, Then, we may have more convenient theorems which assure more
rapid convergence. The following correction formula is now well known
[15,30,33,44-46]:



TreAB = Tr(eA/neB/n)n 4+ 0(n-2). (2.17)
This is generalized as follows [44]:

Theorem 4: If fn({Aj}) satisfies the condition

fm((-A31)71 = fp({A;))t (2.18)
then the approximant

Zn(n) = Tr[fp((1A5)]" (2.19)
is an even function of n, namely,

Zo(-n) = Zy(n). (2.20)
Theorem 5 (corollary of Theorem 4)[44]: With the conditions (2.14) and

). we have
Zexact = Zzm(n) + 0(1=). (2.21)
ném

In particular, if we put me?J}) as (2.9) for symmetric{AJ} (namely,
At.=A.), then we have the following theorem:

Theorem 6 |44|: If{Ail are symmetric operators (i.e., Atj=Aj).
en we have

2p(n) = Tr(eP1/neR2/n. . Po/oyn _ 7oy, (2.22)

Consequently we have

Lexact = Z2(n) + 0(12)- (2.23)
n

This was first obtained by Fye [45] for a general integer p in a
different condition.

Theorem 6 suggests [44] the following new extrapolation method:

Zexact = L(n) + B . (2.24)

Theorem 7 [43]: If Qt=Q with the condition (2.18), the average of any
quantum operator Q defined by

Q> (n) = TrQlfy ((2A1)]"/2, (n) (2.25)

is an even function of n, namely

@p(-n) = <Q>p(n). (2.26)

In particular, we have



