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Lesf men suspect your tale untrue

Keep probability in view.

JOHN GAY

Preface

This text is intended for a one-semester or two-quarter course in introductory prob-
ability theory and some of its applications. The prerequisite is one year of differential and
integral calculus. No previous knowledge of probability or statistics is presumed. At
Washington State University, the course for which this text was developed has been
taught for a number of years, chiefly to students majoring in engineering or in the natural
sciences. Most of these students can devote only one semester to the study of this subject
area. However, since these students are familiar with the calculus, they may begin the
study of this subject beyond the strictly elementary level.

Many mathematical topics may be introduced at varying stages of difficulty, and this
is certainly true of probability. In this text, an attempt is made to take advantage of the
reader’s mathematical background without exceeding it. Precise mathematical language
is used but care is taken not to become excessively immersed in unnecessary mathematical
details. This is most certainly not a “cook book.” Although a number of concepts are
introduced and discussed in an informal manner, definitions and theorems are carefully
stated. If a detailed proof of a theorem is not feasible or desirable at least an outline of
the important ideas is provided. A distinctive feature of this text is the “Notes” following
most of the theorems and definitions. In these Notes the particular result or concept being
presented is discussed from an intuitive point of view.

Because of the self-imposed restriction of writing a relatively brief text on a very exten-
sive subject area, a number of choices had to be made relating to the inclusion or exclusion
of certain topics. There seems to be no obvious way of resolving this problem. I certainly
do not claim that for some of the topics which are excluded a place might not have been
found. Nor do I claim that none of the material could have been omitted. However, for
the most part, the emphasis has been on fundamental notions, presented in considerable
detail. Only Chapter 11 on reliability could be considered as a “luxury item.” But even
here I feel that the notions associated with reliability problems are of basic interest to
many persons. In addition, reliability concepts represent an excellent vehicle for illustrat-
ing many of the ideas introduced earlier in the text.

Even though the coverage is limited by the available time, a fairly wide selection of
topics has been achieved. In glancing through the Table of Gontents it is evident that about
three-quarters of the text deals with probabilistic topics while the last quarter is devoted
to a discussion of statistical inference. Although there is nothing magic about this par-
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iv PREFACE

ticular division of emphasis between probability and statistics, I do feel that a sound
knowledge of the basic principles of probability is imperative for a proper understanding
of statistical methods. Ideally, a course in probability should be followed by one in statis-
tical theory and methodology. However, as I indicated earlier, most of the students who
take this course do not have time for a two-semester exposure to this subject area and
hence I felt compelled to discuss at least some of the more important aspects of the general
area of statistical inference.

The potential success of a particular presentation of subject matter should not be
judged only in terms of specific ideas learned and specific techniques acquired. The final
judgment must also take into account how well the student is prepared to continue his
study of the subject either through self-study or through additional formal course work.
If this criterion is thought to be important, then it becomes clear that basic concepts and
fundamental techniques should be emphasized while highly specialized methods and
topics should be relegated to a secondary role. This, too, became an important factor in
deciding which topics to include.

The importance of probability theory is difficult to overstate. The appropriate mathe-
matical model for the study of a large number of observational phenomena is a proba-
bilistic one rather than a deterministic one. In addition, the entire subject of statistical
inference is based on probabilistic considerations. Statistical techniques are among the
most important tools of scientists and engineers. In order to use these techniques intelli-
gently a thorough understanding of probabilistic concepts is required.

It is hoped that in addition to the many specific methods and concepts with which the
reader becomes familiar, he also develops a certain point of view: to think probabilis-
tically, replacing questions such as “How long will this component function?” by *“How
probable is it that this component will function more than 100 hours ?”’ In many situations
the second question may be not only the more pertinent one but in fact the only meaningful
one to ask.

Traditionally, many of the important concepts of probability are illustrated with the
aid of various “games of chance™: tossing coins or dice, drawing cards from a deck,
spinning a roulette wheel, etc. Although I have not completely avoided referring to such
games since they do serve well to illustrate basic notions, an attempt has been made to
bring the student into contact with more pertinent illustrations of the applications of
probability: the emission of a-particles from a radioactive source, lot sampling, the
life length of electronic devices, and the associated problems of component and system
reliability, etc.

I am reluctant to mention a most obvious feature of any text in mathematics: the prob-
lems. And yet, it might be worthwhile to point out that the working of the problems must
be considered as an integral part of the course. Only by becoming personally involved
in the setting up and solving of the exercises can the student really develop an understand-
ing and appreciation of the ideas and a familiarity with the pertinent techniques. Hence
over 330 problems have been included in the text, over half of which are provided with
answers at the end of the book. In addition to the problems for the reader, there are
many worked-out examples scattered throughout the text.

This book has been written in a fairly consecutive manner: the understanding of most
chapters requires familiarity with the previous ones. However, it is possible to treat
Qiaptm 10 and 11 somewhat lightly, particularly if one is interested in devoting more
time to the statistical applications which are discussed in Chapters 13 through 15.
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As must be true of anyone writing a text, the debts I owe are to many: To my colleagues
for many stimulating and helpful conversations, to my own teachers for the knowledge of
and interest in this subject, to the reviewers of early versions of the manuscript for many
helpful suggestions and criticisms, to Addison-Wesley Publishing Company for its great
help and cooperation from the early stages of this project to the very end, to Miss Carol
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et 1 | Introduction to Probability

1.1 Mathematical Models

In this chapter we shall discuss the type of phenomenon with which we shall
be concerned throughout this book. In addition, we shall formulate a mathematical
model which will serve us to investigate, quite precisely, this phenomenon.

At the outset it is very important to distinguish between the observable phenom-
enon itself and the mathematical model for this phenomenon. We have, of
course, no influence over what we observe. However, in choosing a model we can
use our critical judgment. This has been particularly well expressed by Professor
J. Neyman, who wrote:*

“Whenever we use mathematics in order to study some observational phenomena
we must essentially begin by building a mathematical model (deterministic or proba-
bilistic) for these phenomena. Of necessity, the model must simplify matters and
certain details must be ignored. The success of the model depends on whether or not
the details ignored are really unimportant in the development of the phenomena studied.
The solution of the mathematical problem may be correct and yet be in considerable
disagreement with the observed data simply because the underlying assumptions made
are not warranted. It is usually quite difficult to state with certainty, whether or
not a given mathematical model is adequate before some observational data are
obtained. In order to check the validity of a model, we must deduce a number of
consequences of our model and then compare these predicted results with observations.”

We shall keep the above ideas in mind while we consider some observational
phenomena and models appropriate for their description. Let us first consider
what might suitably be called a dererministic model. By this we shall mean a
model which stipulates that the conditions under which an experiment is per-
formed determine the outcome of the experiment. For example, if we insert a
battery into a simple circuit, the mathematical model which would presumably
describe the observable flow of current would be I = E/R, that is, Ohm’s law.
The model predicts the value of 7 as soon as E and R are given. Saying it dif-

* University of California Publications in Statistics, Vol. I, University of California

Press, 1954.
1



2 INTRODUCTION TO PROBABILITY ) |

ferently, if the above experiment were repeated a number of times, each time
using the same circuit (that is, keeping E and R fixed), we would presumably ex-
pect to observe the same value for /. Any deviations that might occur would be
so small that for most purposes the above description (that is, model) would
suffice. The point is that the particular battery, wire, and ammeter used to generate
and to observe the current, and our ability to use the measuring instrument,
determine the outcome on each repetition. (There are certain factors which may
well be different from repetition to repetition that will, however, not affect the
outcome in a noticeable way. For instance, the temperature and humidity in the
laboratory, or the height of the person reading the ammeter can reasonably be
assumed to have no influence on the outcome.)

There are many examples of “‘experiments” in nature for which deterministic
models are appropriate. For example, the gravitational laws describe quite
precisely what happens to a falling body under certain conditions. Kepler’s laws
give us the behavior of the planets. In each situation, the model stipulates that
the conditions under which certain phenomena take place determine the value of
certain observable variables: the magnitude of the velocity, the area swept out
during a certain time period, etc. These numbers appear in many of the formulas
with which we are familiar. For example, we know that under certain conditions
the distance traveled (vertically, above the ground) by an object is given by
s = —1612 + vot, where v is the initial velocity and ¢ is the time traveled. The
point on which we wish to focus our attention is not the particular form of the
above equation (that is, quadratic) but rather on the fact that there is a definite
relationship between ¢ and s, determining uniquely the quantity on the left-hand
side of the equation if those on the right-hand side are given.

For a large number of situations the deterministic mathematical model described
above suffices. However, there are also many phenomena which require a dif-
ferent mathematical model for their investigation. These are what we shall call
nondeterministic or probabilistic models. (Another quite commonly used term
is stochastic model.) Later in this chapter we shall consider quite precisely how
such probabilistic models may be described. For the moment let us consider a
few examples.

Suppose that we have a piece of radioactive material which is emitting a-
particles. With the aid of a counting device we may be able to record the number
of such particles emitted during a specified time interval. It is clear that we cannot
predict precisely the number of particles emitted, even if we knew the exact shape,
dimension, chemical composition, and mass of the object under consideration.
Thus there seems to be no reasonable deterministic model yielding the number of
particles emitted, say », as a function of various pertinent characteristics of the
source material. We must consider, instead, a probabilistic model.

For another illustration consider the following meteorological situation. We
wish to determine how much precipitation will fall as a result.of a particular storm
system passing through a specified locality. Instruments are available with which
to record the precipitation that occurs. Meteorological observations may give us
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considerable information concerning the approaching storm system: barometric
pressure at various points, changes in pressure, wind velocity, origin and direction
of the storm, and various pertinent high-altitude readings But this information,
valuable as it may be for predicting the general nature of the precipitation (light,
medium, or heavy, say), simply does not make it possible to state very accurately
how much precipitation will fall. Again we are dealing with a phenomenon which
does not lend itself to a deterministic approach. A probabilistic model describes
the situation more accurately.

In principle we might be able to state how much rain fell, if the theory had been
worked out (which it has not). Hence we use a probabilistic model. In the example
dealing with radioactive disintegration, we must use a probabilistic model even in
principle.

At the risk of getting ahead of ourselves by discussing a concept which will be
defined subsequently, let us simply state that in a deterministic model it is supposed
that the actual outcome (whether numerical or otherwise) is determined from the
conditions under which the experiment or procedure is carried out. In a non-
deterministic model, however, the conditions of experimentation determine only
the probabilistic behavior (more specifically, the probabilistic law) of the observable
outcome.

Saying it differently, in a deterministic model we use “physical considerations”
to predict the outcome, while in a probabilistic model we use the same kind of
considerations to specify a probability distribution.

1.2 Introduction to Sets

In order to discuss the basic concepts of the probabilistic model which we wish
to develop, it will be very convenient to have available some ideas and concepts
of the mathematical theory of sets. This subject is a very extensive one, and much
has been written about it. However, we shall need only a few basic notions.

A set is a collection of objects. Sets are usually designated by capital letters
A, B, etc. In describing which objects are contained in the set A4, three methods
are available.

(a) We may list the members of 4. For example, 4 = {1, 2, 3, 4} describes
the set consisting of the positive integers 1, 2, 3, and 4.

(b) We may describe the set 4 in words. For example, we might say that 4
consists of all real numbers between 0 and 1, inclusive.

(c) To describe the above set we can simply write 4 = {x|0 < x < 1};
that is, A is the set of all x’s, where x is a real number between 0 and 1, inclusive.

The individual objects making up the collection of the set A4 are called members
or elements of A. When “a” is a member of 4 we write a € 4 and when “a” is
not a member of 4 we write a & A.

There are two special sets which are often of interest. In most problems we are
concerned with the study of a definite set of objects, and no others. For example,
we may be concerned with all the real numbers, all items coming off a production
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line during a 24-hour period, etc. We define the wniversal set as the set of all
objects under consideration. This set is usually designated by U.

Another set which must be singled out may rise as follows. Suppose that the
set A is described as the set of all rea/ numbers x satisfying the equation x> + 1 =
0. Of course, we know that there are no such numbers. That is, the set 4 contains
no members at all! This situation occurs sufficiently often to warrant the intro-
duction of a special name for such a set. Hence we define the empty or null set
to be the set containing no members. We usually designate this set by 0.

It may happen that when two sets 4 and B are considered, being a member of
A implies being a member of B. In that case we say that A is a subset of B and we
write 4 C B. A similar interpretation is given to B C A. And we say that two
sets are the same, A = B, if and only if 4 C Band B C 4. That is, two sets are
equal if and only if they contain the same members.

The following two properties of the empty set and the universal set are im-
mediate. '

(a) For every set 4, we have ) C A.

(b) Once the universal set has been agreed upon, then for every set 4 considered
in the context of U, we have 4 C U.

ExamMPLE 1.1.  Suppose that U=all real numbers, 4 = {x|x? + 2x —
3=0}, B= {x|(x—2)(*+2x —3) =0}, and C = {x|x = —3,1,2}.
Then A C B, and B = C.

Next we consider the important idea of combining given sets in order to form a
new set. Two basic operations are considered. These operations parallel, in
certain respects, the operation of addition and multiplication of numbers. Let
A and B be two sets. We define C as the union of 4 and B (sometimes called the
sum of A and B) as follows:

C = {x|x € A or x € B (or both)}.

We write this as C = 4 U B. Thus C consists of all elements which are in 4,
or in B, or in both.
We define D as the intersection of A and B (sometimes called the product of
A and B) as follows:
D= {x|x € Aand x € B}.

We write this as D = 4 N B. Thus D consists of all elements which are in A
and in B.

Finally we introduce the idea of the complement of a set A as follows: The set,
denoted by 4, consisting of all elements not in A4 (but in the universal set U) is
called the complement of 4. Thatis, 4 = {x|x & A4}.

A graphic device known as a Venn diagram can be used to considerable advan-
tage when we are combining sets as indicated above. In each diagram in Fig. 1.1,
the shaded region represents the set under consideration.
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INIT

AuB AnB

Ficure 1.1

ExAmPLE 1.2. Supposethat U = {1,2,3,4,5,6,7,8,9,10} ; 4 = {1,2,3,4},B =
{3,4,5,6}. Then we find that 4 = {5,6,7,8,9,10}, 4 U B = {1,2,3,4,5, 6},
and A N B = {3,4}. Note that in describing a set (such as 4 U B) we list an
element exactly once.

The above operations of union and intersection defined for just two sets may be
extended in an obvious way to any finite number of sets. Thus we define4 U BU C
as A U (BU C)or (4 U B) U C, which are the same, as can easily be checked.
Similarly, we define A N BN Cas 4 N (BN C)or (4 n B) N C, which again
can be checked to be the same. And it is clear that we may continue these con-
structions of new sets for any finite number of given sets.

We asserted that certain sets were the same, for example 4 N (B N C) and
(A N B) n C. It turns out that there are a number of such equivalent sets, some
of which are listed below. If we recall that two sets are the same whenever they
contain the same members, it is easy to show that the assertions stated are true.
The reader should convince himself of these with the aid of Venn diagrams.

(@ AUB = BU 4, (b)) ANB=BnA, (.1
©AUBUCO=(AUBUC WANBNC=MANBNC

We refer to (a) and (b) as the commutative laws, and (c) and (d) as the associative
laws.
There are a number of other such ser identities involving union, intersection, and

complementation., The most important of these are listed below. In each case,

their validity may be checked with the aid of a Venn diagram.

@ AuBNC)=(AUBNAUDO,

) ANBUC)=(ANBUANC),

@ ANno =0, (1.2
(h) Aup = 4, ‘ (i) AuB =4n3B,

() AnB)=4UB, A=A
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We note that (g) and (h) indicate that () behaves among sets (with respect to the
operations U and N) very much as does the number zero among numbers (with
respect to the operation of addition and multiplication).

The number of elements in a set will be of considerable importance to us. If
there is a finite number of elements in A4, say a,, ag, ..., a,, we say that 4 is
finite. If there is an infinite number of elements in 4 which may be put into a
one-tp-one correspondence with the positive integers, we say that 4 is countably
or denumerably infinite. (It can be shown for example, that the set of all rational
numbers is countably infinite.) Finally we must consider the case of a nondenumer-
able infinite set. Such sets contain an infinite number of elements which cannot
be enumerated. It can be shown, for instance, that for any two real numbers
b>a, set A= {x|a £ x < b} has a nondenumerable number of elements.
Since we may associate with each real number a point on the real number line, the
above says that any (nondegenerate) interval contains more than a countable
number of points.

The concepts introduced above, although representing only a brief glimpse
into the theory of sets, are sufficient for our purpose: to describe with considerable
rigor and precision, the basic ideas of probability theory.

1.3 Examples of Nondeterministic Experiments

We are now ready to discuss what we mean by a “random” or “nondeterministic”
experiment. (More precisely, we shall give examples of phenomena for which
nondeterministic models are appropriate. This is a distinction which the reader
should keep in mind. Thus we shall repeatedly refer to nondeterministic or random
experiments when in fact we are talking about a nondeterministic model for an
experiment.) We shall not attempt to give a precise dictionary definition of this
concept. Instead, we shall cite a large number of examples illustrating what we
have in mind. In describing an experiment, we must specify not only what opera-
tion or procedure is to be carried out, but we must also specify what is to be
observed. Note, for instance, the difference between E; and Ej below.

E,: Toss a die and observe the number that shows on top.
E,: Toss a coin four times and observe the total number of heads obtained.
E3: Toss a coin four times and observe the sequence of heads and tails obtained.

E,: Manufacture items on a production line and count the number of defective
items produced during a 24-hour period. .

E5: Anairplane wing is assembled with a large number of rivets. The number
of defective rivets is counted. '

Eg: A light bulb is manufactured. It is then tested for its life length by inserting
it into a socket and the time elapsed (in hours) until it burns out is recorded.

E;: A lot of 10 items contains 3 defectives. One item is chosen after another

(without replacing the chosen item) until the last defective item is ob-
tained. The total number of items removed from the lot is counted.
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Eg: Items are manufactured until 10 nondefective items are produced. The
total number of manufactured items is counted.

Ey: A missile is launched. At a specified time ¢, its three velocity components,
Vg, Uy, and v, are observed.

E,o: A newly launched missile is observed at times, 74, #g, ..., I,. At each of
these times the missile’s height above the ground is recorded.

E,,: The tensile strength of a steel beam is measured.

E,;: From an urn containing only black balls, a ball is chosen and its color
noted.

E,3: A thermograph records temperature, continuously, over a 24-hour period.
At a specified locality and on a specified date, such a thermograph is
“read.'Q

E,4: In the situation described in E;3, x and y, the minimum and maximum
temperatures of the 24-hour period in question are recorded.

What do the above experiments have in common? The following features are
pertinent for our characterization of a random experiment.

(a) Each experiment is capable of being repeated indefinitely under essentially
unchanged conditions.

(b) Although we are in general not able to state what a particular outcome will
be, we are able to describe the set of all possible outcomes of the experiment.

(c) As the experiment is performed repeatedly, the individual outcomes seem
to occur in a haphazard manner. However, as the experiment is repeated a large
number of times, a definite pattern or regularity appears. It is this regularity which
makes it possible to construct a precise mathematical model with which to analyze
the experiment. We will have much more to say about the nature and importance
of this regularity later. For the moment, the reader need only think of the repeated
tossings of a fair coin. Although heads and tails will appear, successively, in
an almost arbitrary fashion, it is a well-known empirical fact that after a large
number of tosses the proportion of heads and tails will be approximately equal.

It should be noted that all the experiments described above satisfy these general
characteristics. (Of course, the last mentioned characteristic can only be verified
by experimentation; we will leave it to the reader’s intuition to believe that if the
experiment were repeated a large number of times, the regularity referred to would
be evident. For example, if a large number of light bulbs from the same manu-
facturer were tested, presumably the number of bulbs burning more than 100
hours, say, could be predicted with considerable accuracy.) Note that experiment
E ;5 has the peculiar feature that only one outcome is possible. In general such
experiments will not be of interest, for the very fact that we do not know which
particular outcome will occur when an experiment is performed is what makes it
of interest to us.



