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Preface

The discrepancy between what is taught in a standard course on partial
differential equations and what is needed to understand recent developments
in the theory is now very wide. It is a fact that only a relatively small number
of specialists, in a few universities, are able, these days, to teach a course
that is truly introductory to those developments. Perhaps this is not much
different from what has been happening in all active areas of mathematics.
But it is also true, speaking of the best graduate students, as well as of pro-
fessional mathematicians, that when they are said to be conversant in all
aspects of mathematics, this often excludes substantial portions of analysis
and most of partial differential equations.

The complementary facet of such a state of affairs is that many up-to-date
expositions fail, frequently because of lack of time, to show the link with the
older results, and give the erroneous impression that the modern theories
have no roots and are cut off from a rich past. The truth, of course, is that
progress comes not only from pushing further and further into new territory
but also from frequent returns to the familiar grounds, from seeking an
ever-deeper understanding of their nature, and finding there new inspiration
and guidance.

The archetypes of linear partial differential equations (Laplace’s, the wave
and the heat equations) and the traditional problems (Dirichlet’s and
Cauchy’s) are the main topic of this book. Most of the basic classical
results can be found here. But the methods by which these are arrived at
are definitely not traditional; the methods are, in practically every instance,
applications of those now in favor at a higher level of abstraction. The aim
of this approach is twofold: it is, on one hand, that of recalling the classical
material to the modern analyst, in a language he can understand; on the other
hand, that of exploiting the same material, with the wealth of examples it
provides, as an introduction to the modern theories.

Developments toward greater generality have not been avoided when it
was felt that they represented the natural ““ next step” and afforded a mean-
ingful opening to the more advanced stages of the theory—provided, also,
that they did not require more machinery than had been made available up
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to that point. Thus the reader will find a discussion of the Cauchy problem
for first-order systems of hyperbolic equations with constant coefficients in
Section 15, following the study of the same problem for the wave equation.
Similarly, Garding’s inequality for strongly elliptic equations of any (even)
order is established in Section 36, and, in a somewhat more philosophical
vein, the meaning of the Lopatinski boundary conditions is explained in
Section 38.

The approach to the classical Dirichlet problem calls for some comment.
Because I felt committed to describe the classical results, it was out of the
question to limit the discussion to the weak solution, or variational, method—
even strengthened by the proof of regularity up to the boundary, when the
latter is sufficiently smooth. After all, one might want to have the solution
to the Dirichlet problem in a cube when the boundary value is continuous.
Thus I was resigned to the dichotomy between the variational methods
within the framework of the Sobolev spaces, and the Perron—Brelot method,
tied to potential theory, until Guido Stampacchia indicated to me how to
make the transition from the former to the latter, by way of his weak maxi-
mum principle (Section 28). I have followed his advice and adapted the argu-
ment of his article [2] (where, needless to say, more general second-order
elliptic equations than Laplace’s are studied). From there on, the classical
potential theory can easily take off, as is succinctly indicated in Sections
29 and 30.

Like potential theory, many other important topics are very lightly touched
upon: for example, the Dirac equations, random walks, the finite difference
method, and continuous semigroups of operators. Here the book is truly
introductory; its sole ambition is to give an idea of what these topics are all
about and a taste for learning more. Thus it is not a treatise. Nor is it a class-
room text, due to its size and the quantity of its contents, although it is
true that it began as a set of lecture notes used at the University of Miami
and at Rutgers University. Some readers might find that the writing shows
too little regard for concision—for which I apologize. I have made a point,
rather, of explicitly formulating some of the many thoughts that usually go
unformulated while writing, especially while writing mathematics; and I
hope not to have totally failed in this.

Today, distributions are the language of linear PDE theory, and 1 am
certainly not of the school that would like to do without them. But knowing
that not all students are seriously exposed to distributions, I have limited
their use to their more mechanical aspects—convergence of sequences,
differentiation, convolution; sometimes, but not often, the local representa-
tion of a distribution as a finite sum of derivatives of continuous functions
is used to advantage. Fourier transformation of distributions, however, is
used systematically; the student genuinely interested in PDE must make an
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effort to learn it. Not that much effort is needed, for it is such a smooth and
simple theory: Excellent expositions are found in Chapter VII of L. Schwartz’
book [TD], or in Chapter I of Hormander’s book [LPDO] (and in many
other texts). In particular, the reader should be familiar with the Plancherel
theorem and with the Paley—Wiener(-Schwartz) theorem. As far as linear
functional analysis is concerned, the basic facts about Hilbert and Banach
spaces must be known, but nothing much deeper—although, from the middle
of the book on, an ever greater use is made of functions (and, later, distribu-
tions) with values in Banach spaces. Finally, it is presumed that the student
has a fairly good knowledge of holomorphic functions of one complex
variable, of real variable theory, mainly Lebesgue integration, and a smatter-
ing of measure theory. A bit of linear algebra will be of help, here and there.

There are 390 exercises, and several contain detailed information which
should enable the reader to reconstruct the proofs of some important results:
for example, the hypoellipticity of elliptic equations—of any order—with
C* coefficients, in Exercises 36.4 and 36.7, or the theorem of supports—in
one variable—in Exercises 43.4, 43.5, and 43.6. Other exercises are simple
variants or straightforward applications of the results and the methods in
the text.



Notation

R" product of n copies of the real line R

x!,...,x" coordinates in R"; also y!, ..., ", etc.

x=(x',...,x") the variable in R"; also y, etc.

R, dual of R"

&, ..., &, coordinates in R,; also n,, ..., n,, etc.

&= (&, ..., &) the variable in R,; also 7, etc.

x-E=x" 4+ -+ x"¢, the scalar product between a vector in R" and a
covector in R,; also {(x, &)

Z" product of n copies of the set Z of integers (of all signs)

Z".  product of n copies of the set Z, of nonnegative integers

C" product of n copies of the complex plane C
1 n

z',...,z" complex coordinates in C"

z=(z',...,2") the variable in C"

Rez=(Rez!,..., Rez") the real part of the complex vector z
Imz=(Imz!,...,Imz") the imaginary part of z

C, dual of C"

{45 ..., ¢, coordinates in C,

{=(,...,¢,) the variablein C,

z:{ =2, + -+ 2", the (real) scalar product between zeC" and
{eC,; also {z, (>

|x| ={(x")*+ -+ + (x")?*}'/*> the Euclidean norm on R"

|€], |z|, |¢] the Euclidean norms on R,, C", C,, respectively

|a| =y + -+ + a, the length of the n-tuple o € Z",

al=o! ot (=) G, G) =B — B))! where o, fe Z",
and a; > f; foreveryj=1,...,n

d(x, A) Euclidean distance from the point x to the set 4

B,(x) open ball centered at x, having radius r

sup supremum, or least upper bound, of a set of real numbers

inf infimum, or greatest lower bound, of a set of real numbers

ch A convex hull of a set A (contained in a linear space)

Q an open subset of R"

[a, b] a closed interval, with limit points a and b in the real line R! (also
when either a = — oo and/or b = + o)

xiii
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[a, B[ semiclosed interval a < t < b;]a,b] = {teR';a <t < b}

Ja, b[ openintervala<t<b

A complement of 4

A\B complement in 4 of the subset B of A4

a— f(a) mapping which to the object a assigns the value f(a)

f: E— F mapping f, defined in the set E, and valued in the set F

supp u the support of u (smallest closed set outside which u = 0)

0 : . .

a—;lj partial derivative of u with respect to x’; also u,;, d,,u; also ' if there is
only one variable

— 0
D;= —\/—lﬁ;also D,;

(0/0x)* = (8)ox')™ - - - (9/ox"y*,  (xeZ)

D* = D3 --- Din

dx = dx' ---dx" the Lebesgue measure on R"; d¢ = d¢, -+ d¢, the ana-
log in R, (both measures dx and d¢ assign the volume 1 to the unit
cube)

dz'  the line measure in the complex plane (oriented counterclockwise)
dz =dz' ---dz" the product of n line measures in C"

(f *g)(x) = J. f(x —y)g(y)dy the value at x of the convolution of f and g
n'l
(&) = J‘ e ™"%u(x)dx Fourier transform of u (i= /—1)
ln

Fu also Fourier transform of u

F v(x) = (Zn)'"f e %o(£) dE  inverse Fourier transform of v
l'l

P(x,0/0x) = ) ¢, (x)(@/0x)* a linear partial differential operator of order

la]<m

m in Q (generally with C* coefficients c,)

‘P(x, 0/0x) = Y. (—0/0x)" c,(x) the (formal) transpose of P(x, 3/0x)

la]<m

P(x, 0x)* = | Y (—0d/ox)* m the (formal) adjoint of P(x, 8/0x)

al<m

2\? 0\?
A= (ﬁ) + 4+ (ﬁ) the Laplace operator (or Laplacian) in n vari-

ables
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bl 2
0= (5) — A the wave operator (or d’Alembertian) in n space variables
(¢t always denotes the time variable)
E,F,... Hilbert spaces or Banach spaces over the complex numbers
(sometimes over the real numbers)
X, e, ... elements of the Banach space E

lellg norm, in the Banach space E, of the element e
L(E; F) space of bounded linear operators of E into F, equipped with the
operator norm

Al = sup [Aelg/llele
O#ecE

E’, E*¥ topological dual of the Banach space E, the space of continuous
linear functionals on E [equipped with the dual norm, which is the
operator norm when one recalls that E' = L(E; C)]

{e*, e) or (e, e*)> the duality bracket between e € E and e* € E*

E’ antidual of the Banach space E, i.e., the space of continuous antilinear
functionals on E (a mapping u : E - F is antilinear if u(Ax + py) =
Au(x) + au(y), Vx,y€E, VA, ue C)

{x*, x)>~ the bracket of the antiduality between E and E'

Main Spaces of Functions and Distributions

Cc°(Q) space of complex-valued functions, defined and continuous in
the open set Q, equipped with the topology of uniform conver-
gence on the compact subsets of Q

Cc°'Q) space of complex continuous functions on the closure Q (sup-
posed to be compact), equipped with the maximum norm
Cc™(Q) space of complex functions, defined and m times continuously

differentiable in Q, equipped with the topology of uniform
convergence on every compact subset of Q, of the functions and
of each one of their derivatives of order <m + 1 (me Z, or
m = + o0)

B™(Q) subspace of C™(Q) consisting of the functions having all their
derivatives of order <m + 1 bounded in the whole of Q, equipped
with the topology of uniform convergence over Q of all these
derivatives

c™(Q) subspace of #™(Q) consisting of the functions all of whose
derivatives of order <m + 1 can be extended as continuous
functions to the closure Q (supposed to be compact) of Q,
equipped with the topology induced by £™(2)
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cHQ) subspace of C™(Q) consisting of the functions having compact
support; elements of CX(Q) are often referred to as test functions
in Q

CHK) subspace of CZ(R") whose support is contained in the compact
set K, equipped with the topology induced by C™(R")

LP(Q) Lebesgue space of measurable functions f'such that the pth power

of the absolute value |f| is integrable over Q (I < p < + ),
equipped with the norm || f1| sy = (Ja| /(x)|? dx)'/? (actually f
represents an equivalence class of functions equal almost every-
where)

L*(Q) Lebesgue space of (classes of) measurable functions fin Q which
are essentially bounded, equipped with the norm || f] L, the
essential supremum of f

LE(Q) space of locally-L? functions f in Q [i.e., if K is any compact
subset of Q, the function f equal to fon K and to zero in Q\K
belongs to L?(Q)]

2'(Q) space of distributions in Q

&'(Q) space of distributions with compact support in Q

H™P(Q) space of functions u in Q such that D*u e LP(Q) for all n-tuples
aoeZ,, |o] =m (D* denotes the distribution derivative);
H™ P(Q) is the Sobolev space, equipped with the norm

llull gom.piy = {I |Z< I Da"”it’(n)}”p
aj<m

H3'P(Q)  closure in H™?(Q) of C(Q)
H™™P?(Q) space of distributions # in Q which can be written as finite sums
of derivatives of order <m of functions belonging to L?(Q)
(meZ,)
Z(R") or & space of C® functions v in R” such that, for any pair of non-
negative integers k, M,
Prm(U) = sup{(l + [x[HF Y ID“M(X)I} < + 00,
xeR" lal <M
equipped with the topology defined by the seminorms p,
(& is the space of C® functions in R" rapidly decaying at infinity)
F'(R") or &' the dual of &, also the space of tempered distributions in R"
H*(R") or H® the Sobolev space of order seR in R", i.e., the space of
tempered distributions # in R” whose Fourier transform 4 is a
measurable function such that

d 1/2
Juall, = (fhla(cn’(l + €1y (Zf)") < +oo,

equipped with the Hilbert space structure defined by the norm
Il
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H*(K) subspace of H® consisting of the elements having their support
contained in the compact set K
H{(Q) space of distributions in Q which belong to the space H*(K) for

some choice of the compact subset K of Q
H:, () space of distributions » in Q such that au € H® for every a € CF(Q)
A (Q) space of Radon measures in Q[.#(Q) is the dual of C2(Q)]
2'.(R') or @', space of distributions on the real line which vanish identi-
cally in the open negative half-line

Note: When Q = R", (R") will often be omitted, e.g., as in C®, 2', H®, L?,
etc.
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The Basic Examples of
Linear PDEs

The theory of linear PDEs stems from the intensive study of a few special
equations, whose importance was recognized in the eighteenth and nineteenth
centuries. These were the basic equations in mathematical physics (gravita-
tion, electromagnetism, sound propagation, heat transfer, and quantum
mechanics). After their introduction in applied mathematics, they were shown
to play important roles in pure mathematics: For instance, the Laplace equa-
tion was first studied as the basic equation in the theory of Newton’s potential
and in electrostatics; later, suitably reinterpreted, it was used to study the
geometry and topology of Riemannian manifolds. Similarly, the heat equation
was studied by Fourier in the context of heat transfer. Later it was shown to
be related to probability theory. One of the basic examples, which we describe
below, does not seem to have originated in applications to physics : the Cauchy-
Riemann operator, which is used to define analytic functions of a complex
variable. But to my knowledge, all the remaining ones have their origin in
applied mathematics. At any rate, the general theory of linear PDEs is an
elaboration of the respective theories of these special operators. During the
twentieth century it was recognized that many properties which had seemed
to be the prerogative of the Laplace equation or of the wave equation could in
fact be extended to wide classes of equations. These properties usually
center around a question or a problem that only makes sense for one or the
other equation: for instance, around the Dirichlet problem, which makes
sense for the Laplace equation but not really for the wave equation, or the
Cauchy problem, which is well posed for the latter but not for the former.
The purpose of this introductory course is to help the student to understand
some of these problems and some of their solutions—but always by staying
very close to the special equation for which they were originally considered.
It is therefore necessary that we have the nature of the basic examples clearly
in mind.



