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Foreword

This volume contains the texts of the main talks delivered at the International Sym-
posium on Complex Geometry and Analysis held in Pisa, May 23-27, 1988. The Sym-
posium was organized on the occasion of the sixtieth birthday of Edoardo Vesentini, by
some of his former students, in appreciation of his many contributions to mathematics, of
his teaching and advice.

The aim of the lectures was to describe the present situation, the recent developments
and research trends in several relevant topics in Complex Geometry and Analysis, that is in
those fields in which the mathematical activity of E. Vesentini is most fruitful and inspiring.
The contributors are distinguished mathematicians who have actively collaborated with
the mathematical school in Pisa over the past thirty years.

The organizers would like to thank all the supporting institutions, and, in particular,
the Comitato per la Matematica (CNR) and the Gruppo Nazionale di Geometria Analitica
ed Analisi Complessa (MPI).

The Organizing Committee
V. Villani (chairman)

T. Franzoni

G. Gentili

G. Gigante

S. Levi

E. Ricci

G. Tomassini



Contents

FOTEWOR 15 55 i 11556 54 it 5. 6 s 535 606 506 355 908 615 908 606 506 6 0890 6 W0 A0 6 0 8 06 A0 6 30§ 03 006 W08 908 o I11
M.F. ATIYAH

Hyperkahler Manifolds. ... 1
E. CALABI

Affine Differential Geometry and Holomorphic Curves..................... 15

J.W. CoGDELL, [.I. PIATETSKI-SHAPIRO
The Meromorphic Continuation of Kloosterman-Selberg Zeta Functions.... 23

G. DETHLOFF, H. GRAUERT
Deformation of Compact Riemann Surfaces Y of Genus p with
Distinguished Points Py,..., Py, €Y oo 37

S. KOBAYASHI
On Moduli of Vector Bundles ..ottt 45

A. KorANYI, H.M. REIMANN
Quasiconformal Mappings on CR Manifolds ............. ... ... ... ... 59

R. NAGEL
On the Stability of Positive Semigroups Generated by Operator Matrices .. 77

R. NARASIMHAN
The Levi Problem on Algebraic Manifolds.....................ooiiiats. 85

H.H. SCHAEFER
A Banach-Steinhaus Theorem for Weak* and Order Continuous Operators. 93

J.-P. VIGUE
Fixed Points of Holomorphic Mappings........c.coviuiiiinieinininnan.n. 101

Liast Of PATEICIDATIES . « ¢ s 05 15 515 555 1o 66 55 om0 6 508 o8 506 9 6 o 6 6 i 03 1 o i 566 0 S 3 ' 5 16 3 30 & 107



HYPERKAHLER MANIFOLDS

Michael Atiyah
Mathematical Institute,
24-29 St. Giles,
Oxford OX1 3LB,
England, U.K.

§1. Introduction and Definitions

In recent years hyperkdhler manifolds have turned up in a wide
variety of contexts, and it is now becoming clear that they form a
very interesting class of manifolds with a rich theory. The purpose
of this lecture is to justify these claims by giving an overall

survey of the field.

I shall begin by reviewing the basic definitions and elementary

properties. Then in §2 I will describe the hyperk&dhler quotient

construction of [7] which enables us to construct many examples quite
painlessly. This shows that the theory has a definitely non-trivial
content. In §3 I will concentrate on 4-dimensional manifolds which

are of special interest for various reasons including the classical
relation to physics via Einstein's equations. In particular, I will
describe the beautiful family of examples due to P.B. Kronheimer [9].
In §4 I explain how Yang-Mills moduli spaces give yet more examples
of hyperkdhler manifolds. In particular the moduli spaces of
magnetic monopoles studied in §2 are of special interest. Finally
in §5 I describe the twistor theory of R. Penrose as it applies to
hyperkdhler manifolds and illustrate it for the case of monopole

spaces.

As the name rather obviously suggests hyperkdhler manifolds are

a generalization of Kdhler manifolds, so it is best to start by

briefly recalling that a Kdhler manifold may be defined as a ¢
Riemannian manifold X with an almost complex structure I (ortho-

gonal transformation of the tangent bundle with 12 = -1) which is

covariant constant. This condition implies the usual integrability

condition for I so that X is actually a complex manifold.

Equivalently a Kdhler manifold is a Riemannian manifold with holonomy

group contained in



U(n) < SO(2n) .

The importance of Kdhler manifolds lies mainly in the fact that
algebraic manifolds (affine or projective) always carry Kdhler metrics.
It is also significant that the 2-form W associated to I and the

metric is closed and non-degenerate, so that Kahler manifolds are in

particular symplectic.

Next let us recall that the algebra H of quaternions is
generated (over R) by the symbols i, j, k with the relations

12=j2=k2=—]_

ij = -ji = k etc.

or more succinctly, for x,y,z ¢ R ,

(xi + yj + zk)2 = —(x2 + y2 + z%) (1.1)

A hyperkdhler manifold is now defined as a Riemannian manifold
X endowed with I, J, K (orthogonal transformations of the tangent
bundle) satisfying the quaternion algebra identities and covariant
constant. Briefly we may say that the tangent spaces to X have a
covariant constant H-module structure. Equivalently the holonomy

group of X 1lies in the symplectic group
Sp(k) < SO(4k) .

Clearly by choosing the structure I and ignoring J, K
we see that X has in particular a gomplex Kahler structure. More

generally the role of I can be replaced by

IA = xI + yJ + zK

where

A= (x,y,2) € R3 with Az = x2 + y2 + 22 =1 .

This shows that X has a whole family of complex structures, para-

metrized by points A of the 2-sphere, and that the metric is



Kahlerian for all these complex structures. This explains the

terminology "hyperkdhler".

Note. Although logical and descriptive the terminology is rather
cumbersome and a beautiful class of manifolds deserves a better fate.
Because they involve so many of Hamilton's main interests (quater-
nions, symplectic geometry, theoretical physics) I proposed at one
stage that they should be christened "Hamiltonian manifolds".
Unfortunately the hyperkdhler usage was too widely used (expecially
by physicists) to be eradicated. A pity!

The 3 operators I, J, K combined with the metric yield 3

covariant constant 2-forms Wy Wy giving 3 symplectic

Wy
structures. If we fix on the can;lex structure defined by I then
wr is the (1,1) form associated to the Kdhler metric, while

w7 + in becomes a closed holomorphic 2-form defining a "holomorphic
symplectic" structure.

Since Kdhler manifolds play an important role in complex algebraic
geometry one might speculate that hyperkdhler manifolds should play a
similarly important role in "quaternionic algebraic geometry".
Unfortunately quaternionic algebraic geometry does not seem to exist.
In fact, as we shall see, one can argue in reverse that hyperkdhler
geometry provides a substitute for the non-existent quaternionic
algebraic geometry. The arguments for this view-point are strength-

ened by the following important fact: an irreducible hyperkdhler

metric is uniquely determined (up to a constant scale factor) by its

family of complex structures. Note that the corresponding result
for Kihler metrics is totally false: there are many Kdhler metrics
on a fixed complex manifold. In this sense hyperkdhler geometry is

more tightly related to complex analysis (and eventually to algebra)
than Kdhler geometry. This becomes clearer in the twistor picture

which we shall explain in §5.

Clearly quaternionic space Hk with standard metric (where
i, j, k act orthogonally) is a hyperkdhler manifold. These linear
or flat examples are not very interesting, but they provide the
starting point for the construction of non-linear examples as we

shall see in the next section.



52 The guotient construction

It will be clear from the definitions in §1 that a hyperkdhler
structure is a very restricted one, and one might tend to dismiss the
theory as having only a mild specialized interest. That was
certainly my initial reaction, but my view was radically changed by
the discovery in [7] of a very simple and beautiful "quotient
construction" which generates vast numbers of hyperkéhler manifolds
in a natural way- Moreover this quotient construction is the
quaternionic analogue of a Kdhler quotient which is the geometric
version of classical invariant theory. In this sense the hyperkdhler

quotient replaces the non-existent "quaternionic invariant theory".

Let me begin therefore by reviewing the quotient construction in
Kahler geometry. The prototype is provided by considering the
standard action (scalar multiplication) of the circle group Sl on

a complex vector space cm. The standard way in algebraic geometry

to form a quotient is to complexify Sl to the complex multiplica-
tive group C*, then remove the origin from c? (a "bad" point) and
to form the projective space

n

P = (C

il - 0)/cx . (2.1)

An equivalent procedure using real differential geometry is to
restrict the action of Sl to the unit sphere Szn-l, so that

_ «2n-1 /1
p__, = s/ (2.2)

In this guise Pn—l inherits a natural metric, but the complex
structure is not so transparant. The link between the complex and
metric view-points lies in symplectic geometry. In fact the
function ]z|2 on c" viewed as a Hamiltonian, with respect to the
symplectic structure of ol given by its standard hermitian metric,
generates the Hamiltonian flow of the Sl—action. The quotient{
(2.2) inherits a natural symplectic structure, a procedure well

known in classicial mechanics.

This simple example generalizes to the action of any compact
(connected) Lie group G on a Kdhler manifold X. We assume that

G preserves both the metric and the complex structure, hence also



the symplectic structure. Under mild conditions there is then a

moment map
Lot X > g* (2.3)

where g* 1is the dual of the Lie algebra of G. The components of
u are Hamiltonian functions corresponding to the flows defined by
one-parameter subgroups of G. Also uy 1is assumed to be G-
equivariant. Now let o ¢ g* be fixed by G (frequently we take

a = 0) and assume it is a regular value for yu. Then the manifold

inherits a natural symplectic structure. Clearly Xa also inherits
a Riemannian metric. Together with the symplectic form w this
then defines an almost complex structure I which makes Xa a

Kdhler manifold, the Kahler quotient [8].

If X 1is a projective algebraic variety (with Kdhler class
coming from a projective embedding) then Xa is the projective
variety whose coordinate ring is essentially the G-invariant part of
the coordinate ring of X. All this is part of "geometric

invariant theory" as developed by Mumford.

We are now ready for the hyperkahler case, so let X be a
hyperkdhler manifold and let G be a compact Lie group of auto-

w w

1’ J’ K
of X we get (under mild assumptions) 3 moment maps Wpr o Mgr My

morphisms of X. Using the 3 symplectic structures w

which we can combine into a single quaternionic moment map

L X>g* R R3

3

which is G-equivariant. Let o € g* 8 R be fixed by G and
assume this is a regular value of yu. Then the manifold ¢
X =ut(a)/c
- U

has 3 induced symplectic structures which, together with the induced
metric, define a hyperkdhler structure. This is the hyperkdhler

gquotient of [71].



The complex structure I of Xoc can be seen from an alterna-
tive description. Recall that Wy + in defines a holomorphic
symplectic structure on X. The holomorphic action of G° preserves
this and Uy + iuK gives a holomorphic moment map pc. Then
(uc)—l(aJ + iaK) is a complex sulmanifold Y of X acted on by

G and Xa is clearly the same as the Kdhler quotient Ya , Wwhere

aI,aJ,aK € g*¥ are the 3 components of a ¢ g* & R3 " T

Notes. 1) As the title of [7] indicates hyperkdhler manifolds are

of interest to physicists in relation to supersymmetric models.

2) 1If X is complete the hyperkdhler quotient Xu is also complete.
If o 1is not a regular value of u then X, will have singularities

and removing these leads to an incomplete manifold.

As I pointed out in §1 the quaternionic spaces Hk are hyper-
kdhler manifolds. Hence if G - Sp(k) = Aut(Hk) is any symplectic
representation of G we are in the situation where we can try to
construct quotient hyperkdhler manifolds from the action of G on
Hk. Since there are many choices of groups and representation we
see that the gquotient construction will lead to very many hyperkdhler
manifolds. Even when G 1is a circle or torus the construction

yields interesting examples.

§3. 4-dimensional examples

Since a hyperkadhler manifold has dimension 4k the lowest
dimension is 4, i.e. quaternionic dimension 1. These are in a sense
the quaternionic analogues of Riemann surfaces or algebraic curves
and, as such, deserve special attention. They are also of special
interest because 4 is the dimension of space-time and, since
Sp(l) = SU(2), a hyperkdhler 4-manifold is the same as a Kahler-
Einstein (or self-dual Einstein) manifold. As solutions of the (
(positive definite) Einstein equations such manifolds have been
studied by pysicists in connection with the quantization of gravity.

They are referred to as "gravitational instantons".

So far I have not discussed questions of compactness or complete-
ness but these are obviously important aspects. Compact 4-

dimensional examples are scarce and essentially consist of flat tori



and the K3 surfaces where the existence of a Kadhler-Einstein metric
has been established by S.T. Yau with his proof of the Calabi

conjecture.

If we consider non-compact manifolds the next simplest class
would be complete manifolds which are asymptotically flat. In fact
this can be interpreted in a number of slightly different ways.

One class (referred to as ALE spaces: asymptotically locally
Euclidean) requires the manifold to behave at « 1like (R4-0)/F

where T c Sp(l) 1is a finite group.

Since Sp(l) = SU(2) double covers SO(3) the groups I  which
can occur are just the double covers of the symmetry groups of the
Platonic regular solids in R3, namely the cyclic, dihedral, tetra-
hedral, octahedral and icosahedral groups. These groups are well-
known to be linked, in a subtle way, to the simply-laced Lie groups

E E

A Dn, E 77 Eg -

n, 6’

The construction and classification of ALE spaces for all choices
of T has been worked out by P.B. Kronheimer [9] in a very beautiful
theory. He constructs his manifolds as hyperkdhler quotients with
a judicious choice of Lie group G and symplectic representation.
These are determined uniformly, for all T, in terms of the represent-
ation theory of T, the key ingredients being the regular represent-
ation and the 2-dimensional representation I -+ Sp(l) = SU(2) from
which T arose. Moreover, the hyperkahler metrics have moduli
which arise from the choice of o for the value of the moment map.
Kronheimer proves that the moduli space can be naturally identified

with an open set of "regular" points in the quotient
3
(h & R7) /W

where h 1is the Cartan algebra of the corresponding Lie group ang
¢

W 1is its Weyl group.

If we consider these 4-dimensional hyperkahler manifolds as

"quaternionic algebraic curves" they are analogous in many respects

to complex algebraic curves. H1 of complex curves is replaced by

H2 of our "quaternionic curves" so that

rank H2 (= dim h)



is analogous to the genus. The most direct analogy would restrict
us to the cyclic groups (type An) but the quaternionic case is
richer since we have another infinite family (Dn) and the 3
exceptional cases. Also the moduli are determined by period
matrices in all cases: we integrate the 3 covariant constant 2-

forms over a basis of H2 .

The An family were previously known due to work of Eguchi-
Hanson, Gibbons-Hawking and Hitchin. Also Kronheimer's work has an
intimate relation with that of Brieskorn[5] on deformations and

resolutions of rational double points.

§4. Yang-Mills moduli spaces

If we accept that hyperkdhler 4-manifolds are like algebraic
curves then we might conjecture that it should be possible to con-
struct higher dimensional examples as moduli spaces for bundles over

"curves". This turns out to be true as I shall now explain.

Let X be a hyperkdhler 4-manifold, let G be a compact Lie
group and let A be the space of all G-connections for a fixed
G-bundle P over X. Then A 1is an affine space modelled on 1-
forms on X with values in g. The I, J, K operators induce
similar operators on A which makes A an «-dimensional affine
space over H, with a compatible metric. Mor eover the gauge
group G = Aut(P) acts naturally on A preserving its affine,
metric and quaternionic structures. We can therefore consider
(rather formally) the w-dimensional hyperkdhler moment map

u : A~ (Lie G)*QR3

and then try to construct hyperkdhler quotients. '

In fact a little computation (with appropriate care being taken
over the non-compactness of X) shows that u is essentially the
self-dual part of the curvature. Thus p = 0 becomes the (anti)-

self -dual Yang-Mills equations which define instantons on X, and

the hyperkahler gquotient



is just the instanton moduli space so extensively studied in general

by Donaldson.

There are various cases of special interest, of which the
simplest arise for X = R4 or Sl x R3 . The first gives the
instanton moduli spaces studied in [1], while the Sl—invariant part
of the moduli space for S1 X R3 gives the magnetic monopole moduli

spaces studied in [2].

Of course this description is very formal and ignores the analyt-
ical difficulties that arise with «-dimensional spaces. Neverthe-
less the analysis works and the conclusions remain valid so that we
have here families of hyperkdhler manifolds, which arise naturally

as hyperkdhler quotients of «-dimensional affine spaces.

There is actually a very mysterious duality principle of Nahm
which means that the same moduli space has 2 different (dual)
presentations as a hyperkdhler quotient. Roughly speaking Nahm'"s

principle goes as follows. Let T c R4 be a subgroup of the form

R? x Zb and let TI' be the Pontrjagin dual (or character group) of
R4/F s Then we can construct I'-invariant instantons from
[''-invariant instantons and vice-versa. However, the Lie groups
involved are not the same, the duality interchanging quantities like

the rank of the Lie group and Chern classes.

In the extreme case when I = 0 , then T' = R4 and

I''-invariance reduces us to algebra. In fact Nahm's principle, as
shown by Donaldson [6], amounts to the main result in [1], [31] which
gives an algebraic description of the instanton moduli space. In
this case therefore the instanton moduli space has 2 hyperkahler
quotient descriptions, one finite-dimensional described in [6] and

the other «-dimensional.

When I = R we are in the case originally studied by Nahm &nd

leading to the monopole moduli spaces of [2].

The hyperkdahler metric on the instanton moduli spaces of R4
is, for rather basic reasons, incomplete. For example the first

case is H x (H—O)/Z2 with the flat metric. On the other hand
the monopole moduli spaces have complete metrics and this complete-
ness has an important physical interpretation as explained in [2].



10

These monopole spaces are therefore an interesting class of hyper-
kadhler manifolds and I will return to them in §5. Let me at this
stage Jjust say that they have somewhat different asymptotic
properties to the ALE spaces.

85, Twistor Spaces

Twistor spaces were introduced by R. Penrose into theoretical
physics with the aim of translating problems from Minkowski space
into an alternative framework where complex analysis and geometry can
be brought into play. Hyperkdhler manifolds fit naturally into the
Penrose twistor theory. In fact the 4-dimensional case involving
Einstein's equation represents part of the motivation and also the

success of the Penrose programme.

The basic idea is very simple. Since a hyperkdhler manifold
X has a family of complex structures IA parametrized by
A € 82 = Pl(C) we can put all these together on X x Pl' If we

put the complex structure IX on the fibre XA = X x {A} and give

Pl its natural complex structure it turns out that we get a complex

structure on the total space Z = X x Pl so that the projection

Z - Pl is a holomorphic map. In terms of the general theory of

complex structures we can say that the XA form a holomorphic

family of complex structures. Z is called the twistor space.

If o 1is the antipodal map on 52 = Pl then XO(A) is the

complex conjugate structure to XA & Thus (x,\) =+ (x,0(X))
extends ¢ to a complex conjugation or real structure on Z. The

horizontal sections {x} x P are holomorphic curves and are real

1
(i.e. g-invariant).

By adding a bit more data, essentially the holomorphic symplec-
tic structures on the fibres XA we end up with a twistor descript-
ion (involving only holomorphic data and the real structure o)

which is entirely equivalent to the hyperkdhler metric of X.

Returning to our general idea that hyperkdhler manifolds pro-
vide a substitute for quaternion algebraic varieties the twistor
philosophy can now be summarized as follows. Instead of trying

to develop a theory of non-commtative quaternionic analysis we use



1

ordinary camplex analysis for all embeddings C -+ H , parametrized

by A ¢ Pl , and remember also the holomorphic dependence on ).

The twistor picture suggests new ways of generating hyperkdhler

manifolds. For example given a twistor space Z -~ Pl we could try

to replace each fibre XX by a suitable desingularization Xx(k) of

its k-fold symmetric product so as to obtain a new twistor space
Z(k) - P For this to work the new fibres X, (k) have to be holo-

1° A
morphic symplectic manifolds. This procedure turns out to work when
dim X = 4 , so that the XA are complex surfaces. The desingular-

ization needed uses Hilbert schemes as in the work of Beauville [4].
Consider in particular the case X = Sl X R3 with its standard

flat metric. In terms of the magnetic monopoles (for SU(2))

studied in [2] we can identify X with the moduli space M of

1
1 -monopoles: such a monopole has a "location" in R3 and a "phase"

angle. The k-monopole moduli space Mk is, as we observed earlier,
a hyperkdhler manifold. Its twistor space Z(k) 1is obtained from
the twistor space 2Z of Ml = Sl X R3 by a version of the

desingularized k-fold symmetric product construction indicated above.
This means that the horizontal sections of Z(k) - P1 (which
represent points of Mk and hence k-monopoles) correspond to

k-sections of Z -+ P i.e. holomorphic curves meeting each fibre in

1 ’
k points (possibly coincident).

This representation of k-monopoles in R3 by k-sections of the
twistor space is intimately related to "soliton" ideas. I recall
that a 1-monopole is viewed as an approximately localized magnetic
particle, and a k-soliton can be viewed approximately as a super-

position of k such particles provided these are far apart.

However when the particles get close together the k-monopole loses its
particle identity and is just a complicated non-linear field in

space. Translated into the twistor picture this says that a ¢
k-monopole, in the far separated case, is represented by a k-section
which approximately looks like a union of k simple sections. In

general however a k-section does not resemble k separate sections.

The twistor picture enables us to take the soliton idea one

stage further. If we fix one fibre of 2 - P i.e. if we fix a

ll
complex structure of S1 X R3 , then a k-section does indeed cut
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this fibre in just k points (possibly coincident), and these
determine the k-section. We can in this way think of the general
k-monopole as an exact "superposition" of k single monopoles.
This description depends however on the choice of complex structure
on S1 x R3 o The dependence is weak in the far separated case
(so that we recover the usual soliton picture) but is strong in the

nearby (or interactive) case.

Since solitons are one version of the particle/wave dichotomy
I like to think that Hamilton, who was much involved in the 19th
century controversies on the nature of light, would have been intrigued

by the role which guaternions play in connection with solitons.

Let me conclude with a few brief remarks about the first non-
trivial monopole space, namely the 2-monopole moduli space M2 =

Because there is a natural centre it turns out that, up to a double

covering, M, is the product of Ml (representing the centre of
mass) and another hyperkdhler 4-manifold Mg which measures vari-
ables relative to the centre. The manifold Mg is a very remark-
able 4-dimensional hyperkdhler manifold and it is extensively

studied in [2]. Here are some of its basic properties.

(1) Asymptotically it looks like a circle bundle over R3 - 0 4

(2) The fundamental group at <« 1is the quaternion group of order 8,
(3) It admits an action of SO(3) by isometries; this action does

not preserve the complex structures, but rotates them,

(4) Its fundamental group is of order 2 and its double covering

is the algebraic surface

xT - zy =1 i
¢
Property (3) and the hyperkdahler property essentially determine
the metric uniquely and there is an explicit formula for it involving
elliptic integrals. Except for an overall scale there are no free
parameters. The geodesics on Mg have an interpretation in terms
of the dynamics of slowly moving monopoles and this is the main

theorem of [2].



