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Preface

The 4th International Workshop on Knowledge Discovery in Inductive Databases
(KDID 2005) was held in Porto, Portugal, on October 3, 2005 in conjunction
with the 16th European Conference on Machine Learning and the 9th European
Conference on Principles and Practice of Knowledge Discovery in Databases.

Ever since the start of the field of data mining, it has been realized that
the integration of the database technology into knowledge discovery processes
was a crucial issue. This vision has been formalized into the inductive database
perspective introduced by T. Imielinski and H. Mannila (CACM 1996, 39(11)).
The main idea is to consider knowledge discovery as an extended querying pro-
cess for which relevant query languages are to be specified. Therefore, inductive
databases might contain not only the usual data but also inductive general-
izations (e.g., patterns, models) holding within the data. Despite many recent
developments, there is still a pressing need to understand the central issues
in inductive databases. Constraint-based mining has been identified as a core
technology for inductive querying, and promising results have been obtained for
rather simple types of patterns (e.g., itemsets, sequential patterns). However,
constraint-based mining of models remains a quite open issue. Also, coupling
schemes between the available database technology and inductive querying pro-
posals are not yet well understood. Finally, the definition of a general purpose
inductive query language is still an on-going quest.

This workshop aimed to bring together database, machine learning and data
mining researchers/practitioners who were interested in the numerous scientific
and technological challenges that inductive databases offers. The workshop fol-
lowed the previous three successful workshops organized in conjunction with
ECML/PKDD: KDID 2002 held in Helsinki, Finland, KDID 2003 held in Cavtat-
Dubrovnik, Croatia, and KDID 2004 held in Pisa, Italy. Its scientific program
included seven regular presentations and four short communications, an invited
talk by Carlo Zaniolo, and an invited “workshop-closing talk” by Arno Siebes.
During the workshop, only informal proceedings were distributed. Most of the
papers within this volume have been revised by the authors based on the com-
ments from the initial referring stage and the discussion during the workshop.
A few are invited chapters.

We wish to thank the invited speakers, all the authors of submitted papers,
the Program Committee members and the ECML/PKDD 2005 Organization
Committee. KDID 2005 was supported by the European project IQ “Inductive
Queries for Mining Patterns and Models” (IST FET FP6-516169, 2005-2008).

December 2005 Francesco Bonchi
Jean-Francois Boulicaut
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Data Mining in Inductive Databases

Arno Siebes

Universiteit Utrecht,
Department of Computer Science,
Padualaan 14, 3584CH Utrecht, The Netherlands
arno@cs.uu.nl

Abstract. Ever since the seminal paper by Imielinski and Mannila [11],
inductive databases have been a constant theme in the data mining liter-
ature. Operationally, such an inductive database is a database in which
models and patterns are first class citizens.

In the extensive literature on inductive databases there is at least one
consequence of this operational definition that is conspicuously missing.
That is the question: if we have models and patterns in our inductive
database, how does this help to discover other models and patterns? This
question is the topic of this paper.

1 Introduction

Ever since the start of research in data mining, it has been clear that data
mining, and more general the KDD process, should be merged into DBMSs.
Since the seminal paper by Imielinski and Mannila [11], the so-called inductive
databases have been a constant theme in data mining research, with its own
series of workshops.

Perhaps surprisingly, there is no formal definition of what an inductive
database actually is. In [30] it is stated that it might be too early for such a defini-
tion, given the issues I raise in this paper, I tend to agree with this opinion. Still,
we need some sort of shared concept of an inductive database.

Mostly, people think of inductive databases in analogy with deductive
databases; an analogy that is not without its weaknesses as we will see later. I take
a slightly different angle, viz., an inductive database is a database in which the dis-
covered models and patterns are first class citizens. That is, we should be able to
treat models and patterns as any other data object. This very operational defini-
tion of an inductive database is our guiding principle in this paper.

Research in inductive databases is mainly focused on two aspects:

1. The integration of data mining and DBMSs, which itself encompasses two,
not necessarily disjunct, main topics,
(a) database support for data mining, or, the integration of data mining
algorithms into a DBMS and
(b) integrating data mining into standard query languages like SQL.
2. Querying models and patterns.

F. Bonchi and J.-F. Boulicaut (Eds.): KDID 2005, LNCS 3933, pp. 1-23, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 A. Siebes

These are clearly important aspects of an inductive database and surprisingly
hard to do well to boot. However, they are not all there is for an inductive
database. This alone doesn’t make models and patterns first class cizitizens. In
fact, the most important aspect of an inductive database is missing: the data
mining!

This might seem a strange statement since both main topics are deeply con-
cerned with data mining. The first one is all about making data mining no
different from other, more standard, queries in, e.g., SQL. The second one is
about storing the models and patterns that result from mining queries in the
database and querying those results with constraints.

This is very much in line what would would expect for inductive databases,
especially if one compares with deductive databases [23]. For, except for the
architectural issues of integration, these topics can be nicely formalised in first
order logic [30]. Moreover, pushing the query constraints into the mining algo-
rithm is a natural extension of standard relational query optimisation.

So, the analogy of inductive databases and deductive databases is certainly a
fruitful one. However, this analogy doesn’t tell the whole story.

In deductive databases, the Intentional Database (the rules) is a static
component. Queries result in new facts, not in new rules.

In data mining, however, we are not interested in new facts, we want to dis-
cover new models and patterns. If we already have models and patterns in our
database, a natural question is: does this help? So, a central question for data
mining in inductive databases that is not covered by the analogy with deductive
databases is:

How do the models and patterns we have already discovered help us
in discovering other models and patterns?

This question is the topic of this paper. Given that it is an invited paper, I feel
free to raise more questions than I answer. The goal is to point to new research
questions, not to answer them.

I discuss three aspects of this question in this paper:

Relational Algebra: Models and patterns are tightly connected to the data
tables they have been induced from. In a DBMS we can construct new ta-
bles from existing ones using relational algebra. It would be useful if these
algebraic manipulations could be lifted to the models and patterns. It would
give us models and patterns for free.

Models for Models: If we have already induced models and/or patterns from
a data table, does this help us in the induction of other models and/or
patterns from that same table?

Models on Models: If models and patterns are first class citizens in our data-
base, we should be able to mine a collection of models or a collection of patterns.
How can we do this and, perhaps more importantly, does this make sense?

The questions are discussed both from a pattern and from a model perspective.
The patterns used are mostly frequent item sets, the models mostly Bayesian
networks.
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This paper is not meant to be a survey paper, i.e., it is in no way complete.
For some if not all off the (sub-)questions the paper discusses there is far more
published literature than is mentioned or discussed. The choices made are mostly
based on what I thought would nicely illustrate my point. Moreover, there is a
clear bias to papers I have been involved in!.

The road map of this paper is as follows. In Section 2, some preliminaries are
introduced. The next three sections discuss the three sub-questions introduced
above. Finally, in the final section concludes the paper by formulating a couple

of research topics I feel are important for inductive databases.

2 Preliminaries

In order to keep our discussion simple, we assume a binary database. In fact, in
general we assume the database contains one binary table. Only in the case of
relational algebra we assume multiple tables when the operators require more
than one input table.

In the case of frequent item sets, we use the standard terminology of items and
transactions. In the Bayesian networks case, we will mostly call them variables
and tuples. Given the simple relationship between a binary table and a set of
transactions, this should not confuse the reader. We discuss both contexts briefly.

2.1 Models and Patterns

In the introduction we already used both the terms model and patterns. Both
terms are probably familiar to all data miner, although I wouldn’t know a formal
definition of either. The goal of this subsection is not to present such a definition,
but to point out the most important difference between the two.

Models describe the whole database, they are global. Patterns describe local
phenomena in the database. In (8], a pattern is defined by:

data = model + patterns + random

In [22] this definition extended with three characteristics, viz.,

— Local patterns cover small parts of the data space.
— Local patterns deviate from the distribution of which they are part.
— Local patterns show some internal structure.

In other words, while a model tries to capture the whole distribution, patterns
describe small sub-spaces were this distribution differs markedly from the global
picture.

Given this distinction, it seems obvious that models that have been discovered
offer more aid in the discovery of other models and patterns than discovered pat-
terns can. While most of the examples in this paper agree with this observation,
this is not true for all of them.

! In other words, this paper is blatant self promotion!
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2.2 Frequent Item Sets

The problem of frequent item set mining [1] can be described as follows. The
basis is a set of items Z, e.g., the items for sale in a store; |[Z| = n. A transaction
t € P(Z) is a set of items, e.g., representing the set of items a client bought at
that store. A database over Z is simply a set of transactions, e.g., the different
sale transactions in the store on a given day. An item set I C Z occurs in a
transaction t € db iff I C t. The support of I in db, denoted by suppay(I) is
the number of transactions in the database in which ¢ occurs. The problem of
frequent item set mining is: given a threshold min-sup, determine all item sets
I such that suppgy(I) > min-sup. These frequent item sets represent, e.g., sets
of items customers buy together often enough.
Association Rules are generated from these frequent item sets. If X is a fre-
quent item set and Y C X,
X\Y Y

; ot ; suppay (X) ot
is an association rule. Its confidence is defined as Suppa XNV - For association

rule mining, one has the min-sup threshold for support and a min-conf threshold
for the confidence of a rule. The problem is to find all rules that satisfy both
minimal thresholds.

Often there are other interestingness measures used to reduce the number of
discovered association rules. The one that is most often used is the lift. The lift

— . confdb(X—oY!
of arule X — Y is defined as ST

If the database consists of a set of sequences of events, we can define analogous
concepts [20]. An episode is simply a sequence of events. An episode E occurs
in a sequence S if deleting events from S yields F; note that an episode E may
occur multiple times in S. The support of an episode is the number of times an
episode occurs in the database. With a minimal support threshold, the problem
is: find all frequent episodes.

2.3 Bayesian Networks

Bayesian networks by now are widely accepted as powerful tools for representing
and reasoning with uncertainty in decision-support systems. A Bayesian network
is a concise model of a joint probability distribution over a set of stochastic vari-
ables [29]; it consists of a directed acyclic graph that captures the qualitative
dependence structure of the distribution and a numerical part that specifies con-
ditional probability distributions for each variable given its parents in the graph.
Since a Bayesian network defines a unique distribution, it provides for computing
any probability of interest over its variables.

A Bayesian network is a concise representation of a joint probability distri-
bution over a set of stochastic variables X = (Xi,...,X,). The network con-
sists of a directed acyclic graph in which each node corresponds with a variable
and the arcs capture the qualitative dependence structure of the distribution.
The network further includes a number of conditional probabilities, or param-
eters, p(Xi | Xq(:)) for each variable X; given its parents X, ;) in the graph.
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The graphical structure and associated probabilities with each other represent
a unique joint probability distribution Pr(X) over the variables involved, which
is factorised according to

n
PI‘(X) = Hp(Xi: I X-/r(i))
i=1
There are numerous algorithms that induce Bayesian networks from data, see,
e.g., [24].

3 Lifting Relational Algebra

The question is: can we extend the relational operators to models and patterns?
By focusing on the relational algebra, we have already a syntax. How about the
semantics? For example, what is the join of two models? Obviously there are
many ways in which this can be defined and the choice for a particular seman-
tics is perhaps the most important factor for our practical view on inductive
databases. Our choice is to lift the standard operators to models. Lifting means
that we want our new operator to construct a new model or a new collection of
patterns from the input models or patterns only. That is, without consulting the
database.

Note, we use the bag semantics for relational algebra rather than the set
semantics that are more standard in database theory. The reason is that the
databases we want to mine adhere to the bag semantics since this is the under-
lying principle of each available DBMS.

3.1 Select
The relational algebra operator o (select) is a mapping:
o : B(D) — B(D)

in which B(D) denotes all possible bags over domain D.

Lifting means that we are looking for an operator o(p 4y that makes the
diagram in figure 1 commute: Such diagrams are well-known in , e.g., category
theory [3] and the standard interpretation is:

AOO’ZO’(D,A)OA

9(D,A)

M

A A

B(D) —Z—+ B(D)

Fig. 1. Lifting the selection operator
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In other words, first inducing the model using algorithm 4 followed by the appli-
cation of the lifted selection operator o (p, 4) yields the same result as first applying
the standard selection operator o followed by induction with algorithm A.

For algorithms that do compute the optimal result, such a strict interpretation
of the diagram seems reasonable. However, many algorithms rely on heuristic
search. In such cases, it doesn’t seem reasonable at all to require this strict
reading of the diagram. Rather we settle for a reasonably good approximation.
That is, the lifted selection operator doesn’t have to result in a locally optimal
model, but it should be close to one?. If not explicitly stated otherwise, we will
use commutation in this loose sense.

Frequent Item Sets. The three basic selections are 01—, 0r=1, and o, =p,.
More complicated selections can be made by conjunctions of these basic com-
parisons. We look at the different basic selections in turn.

First consider oj—¢. If it is applied to the database, all transactions in which I
occurs are removed from the database. Hence, all item sets that contain I get a
frequency of zero in the resulting database. For those item sets in which I doesn’t
occur, we have to compute which part of their support consists of transactions
in which I does occur and subtract that number. Hence, we have:

0 ifIedJ,
freqap(J) — freqap(J U{I}) else.

If we apply o7-1 to the database, all transactions in which I doesn’t occur
are removed from the database. In other words, the frequency of item sets that
contain I doesn’t change. For those item sets that do not contain, the frequency
is given by those transactions that also contained /. Hence, we have:

frego,_oan)(J) = {

fregan(J) if IelJ,
freqan(JU{I}) else.

If we apply or,=1, to the database, the only transactions that remain are
those that either contain both I; and I or neither. In other words, for frequent
item sets that contain both the frequency remains the same. For all others, the
frequency changes. For those item sets J that contain just one of the I; the
frequency will be the frequency of J U {I;,I5}. For those that contain neither
of the I;, we have to correct for those transactions that contain one of the I; in
their support. If we denote this by frega(J—-I;—I3) (a frequency that can be
easily computed) We have:

freds,_;@n)(J) = {

freqdb(JU{Il,Ig}) if {II,IQ}QJ#@,

o1y = J)=
freq 11_12(db)( ) {fTGde(J—'Il_'Iz) else.

Clearly, we can also “lift” conjunctions of the basic selections, simply process
one at the time. So, in principle, we can lift all selections for frequent item sets.

% Given the nature of this paper, I am not going to attempt to formalise this notion.
I hope the reader has some idea of what I mean.
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9(D,A)

M M

A A

?,6

o

B(D) —Z—+ B(D)

Fig. 2. Lifting selections for succinct constraints

But only in principle, because we need the frequency of item sets that are not
necessarily frequent. Frequent item sets are a lossy model (not all aspects of the
data distribution are modelled) and that can have its repercussions: in general
the lifting will not be commutative. In our loose sense of “commutativity”, the
situation is slightly better. For, we can give bounds for the resulting frequencies.

We haven’t mentioned constraints [25] so far. Constraints in frequent item
set mining are the pre-dominant way to select a subset of the frequent item
sets. That is exactly, why we haven’t mentioned them so far. In general the con-
straints studied do not correspond to selections on the database. The exception
is the class of succinet anti-monotone constraints introduced in [26]. For these
constraints there is such a selection (that is what succinct means) and the con-
straint can be pushed into the algorithm. This means we get the commutative
diagram in figure 2. Note that in this case we know that the diagonal arrow
makes the bottom right triangle commute in the strict sense of the word. For
the upper left triangle, as well as the square, our previous analysis remains true.

Bayesian Networks. The selections 0 4—¢ and 0 4—; in Bayesian networks are a
simple example of partial knowledge: if we know that variable A has value 1, what
can we infer about the values of the other attributes? There are standard inference
algorithms [24] for this problem that allow us to propagate this partial knowledge
After that, we can remove the variables that are now fixed, such as A. For example:

B «— A — C transformsto B C

That is, in this example B and C become independent after the selection. In
the case of induced dependencies, we have to be careful to add the necessary
induced arcs, such as:

B — A « C transforms to B — C

Note that for this simple case, the inference algorithms are polynomial.

The selection o4-p is slightly more complicated. There are three cases we
need to consider.

Firstly, if A and B are in disconnected components of the graph, we can sim-
ply add an arc from A to B3. Furthermore, we have to update the (conditional)
probability table of B such that it gives probability zero to those cases were

3 Or from B to A, without a causal interpretation this doesn’t matter.



