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Preface

During the academic year 1947-48 Rudolf K. Luneburg gave a
course at New York University in which he presented his ideas on the
relation of classical geometrical optics to electromagnetic theory and on the
foundation of diffraction optics. He also introduced the notion of an
asymptotic series solution of Maxwell’s equation in which the geometrical
optics field is the essence of the first term. It seemed desirable shortly
after Luneburg’s death in 1949 to give some more permanent and fuller
form to his mimeographed lecture notes, and the first-named author made
some efforts at that time to amplify and polish the notes and to prepare
them for a book.

However, Luneburg’s interest lay primarily in geometrical optics,
and his concern in looking at asymptotic series solutions of Maxwell’s
equations and in obtaining an asymptotic evaluation of the integrals of
diffraction optics was to show that what is neglected as the frequency of
the source becomes infinite does not matter for geometrical optics.
While at New York University, Luneburg was a member of what is now
called the Division of Electromagnetic Research of the Courant Institute
of Mathematical Sciences; the chief interest of this group has been to
develop methodology for solving electromagnetic problems at frequencies
well below the optical range. For this purpose the higher order terms in the
asymptotic series considered by Luneburg are of great interest because
they provide improvements over what geometrical optics supplies. More-
over, Luneburg’s work suggested the idea of seeking asymptotic series
solutions for a variety of initial and boundary value problems of electro-
magnetic theory. A number of men both within the Division and without
then exploited this idea and tackled numerous mathematical problems en-
countered in the course of this work. It therefore seemed wiser to defer
publication of Luneburg’s original material until one could add an account
of this significant extension. The pressure of numerous daily obligations
prevented both authors from working at a rapid rate, and far too many
years have passed from the time the original project was conceived.

Several other matters warrant attention. In the summer of 1944
Luneburg gave a course entitled Mathematical Theory of Optics at Brown
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vi PREFACE

University. The lecture notes for this course were mimeographed, but
nothing more was done with them for many years. The University of
California Press has now undertaken to publish the notes in book form and
this move is indeed welcome. There is relatively little overlap between
that book and the present one. The presentation of geometrical optics
for isotropic media and some material on rays and wave frontsinsuch media
are roughly the same there as here, and there is just a mention of the
notion of a series solution of Maxwell’s equations in inverse powers of the
frequency. But the bulk of the Brown University lectures is devoted
to geometrical optics proper and to aberration theory. The latter material
is not covered in the present book. On the other hand, the electro-
magnetic approach to geometrical optics for anisotropic media, the
expansion of general time-dependent fields in power series and of time-
harmonic fields in asymptotic series, the asymptotic expansion of the
integrals of diffraction optics, and some typical applications of the entire
body of material to electromagnetic problems are to be found only in the
present work.

This book is addressed to physicists and engineers as well as to
mathematicians, and so we have made the effort to give full mathematical
details. Many of these may seem unnecessary to proficient mathemati-
cians, but they may be helpful to others whose backgrounds and special
talents lie in other domains. Insofar as rigor is concerned, some points
could have been supplied but the need for them did not seem strong.
Other points of rigor are not as yet established, and footnotes indicate
the current state of these deficiencies.

Another matter is the form in which the material of this book is
presented. Luneburg himself and those who followed up directly the
ideas in his work were concerned with Maxwell’s equations, but it became
clear, through papers which generalized on results obtained for Maxwell’s
equations, that the proper mathematical domain for the theory of this
book is the class of first order linear symmetric systems of hyperbolic
partial differential equations. Most of the material then of this book
could have been framed entirely in terms of such systems, and from the
standpoint of the mathematician the material might have been more
attractive. But those interested in electromagnetic theory would not
have been happier (if at all happy about what they do find). To under-
stand what the more general systems say for Maxwell’s equations calls for
quite a task of specialization and interpretation. Moreover, the extension
to symmetric hyperbolic systems was made by generalizing the relatively
concrete work originally donefor Maxwell’s equations. Such generalizations
are a comparatively simple matter when the basic ideas are already at
hand, and it is far better pedagogically to study the concrete case first.
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Introduction

I have a paper afloat, with an electromagnetic
theory of light, which ’till I am convinced to
the contrary, I hold to be great guns.

James Clerk Maxwell (1865)

1. The Objectives of This Book

We propose to explore and exploit the relationship between Maxwell’s
electromagnetic theory and geometrical optics. In view of the fact that
Maxwell’s theory supersedes the older geometrical optics the question
arises: Why should we pursue this relationship? There are four major
reasons for pursuing and clarifying it.

The first is the purely theoretical or academic problem of building a
mathematical bridge between the two domains, electromagnetic theory
and geometrical optics. The older bases (to be described and discussed
below) for asserting that geometrical optics is a limiting case of electro-
magnetic theory are vague and from a mathematical standpoint highly
unsatisfactory. v

The second major reason for investigating the relationship in question
is a practical one. To solve problems of electromagnetic theory, whether
in the range of radio frequencies or visible light frequencies, we should
solve Maxwell’s equations with the appropriate initial and boundary con-
ditions. However, as is well known, Maxwell’s equations can be solved
exactly for few problems. Hence physicists and engineers, especially those
concerned with high frequency problems, have frequently resorted to the
simpler methods of geometrical optics. Although these methods have
proved remarkably efficacious in the optical domain, they are intrinsically
limited; they do not furnish information about some of the most important
phenomena such as diffraction, polarization, and interference, to say
nothing about the numerical accuracy of what geometrical optics does

1



2 ELECTROMAGNETIC THEORY AND GEOMETRICAL OPTICS

yield. Itisalso a fact that optical research men are now looking more and
more into diffraction effects, and these prime users of geometrical optics
are entering into an electromagnetic treatment of optical problems. The
new techniques for producing monochromatic light certainly make such a
step all the more advisable. Hence the practical question becomes
whether the establishment of a better link between Maxwell’s theory and
geometrical optics will also provide more useful approximate methods of
solving electromagnetic problems. Insofar as high frequency problems are
concerned, the answer, based on work of the years since about 1953,
can already be given affirmatively. We shall present approximate methods
of solving electromagnetic problems which improve on geometrical optics
in several respects.

The third major reason for pursuing the relation of Maxwell's theory
to geometrical optics is to build a better basis for diffraction optics. The
integrals of diffraction optics are now being used freely in some electro-
magnetic diffraction problems and are the starting point of hosts of
investigations in diffraction optics. We shall give a new formulation of
optical diffraction problems (though we shall employ Kirchhoff's principle),
and we shall derive from it a better approach to the diffraction optics of
incoherent light, that is, light emanating from a collection of sources, e.g.,
a collection of atoms putting forth radiations which are random in phase
and polarization.

This investigation serves a fourth purpose. The material of this book
is concerned with the relationship between full time-dependent solutions
of Maxwell’s differential equations and a special related phenomenon,
geometrical optics. In principle it is concerned with the relationship
between a wave theory and a non-periodic phenomenon, the latter being
in some sense a limiting case as a parameter (the wave length in electro-
magnetic theory) goes to zero. The concepts and methods to be treated
carry over to broad classes of linear partial differential equations. Thus,
in any branch of physics which rests on a single linear partial differential
equation or a system of linear partial differential equations in the indepen-
dent variables x, ¥, z, and ¢, corresponding to the exact time-dependent
solutions whether general or time-harmonie, there may exist physically
significant limiting solutions as some parameter goes to zero. For example,
the same values which the material presented here may offer in relating
electromagnetic theory and geometrical optics may be derived for the
relationship between quantum mechanics and classical mechanics. The
theory also suggests the construction of a geometrical acoustics as a
limiting case of the linearized theory of acoustics, that is, the acoustics
of waves of small amplitude. Similarly, waves in gases have limiting
phenomena which are called shock waves, and these are the ‘‘geometrical
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optics” of the ordinary waves. We shall, in fact, see that the electro-
magnetic investigations to be surveyed in this book do indeed suggest
new creations or new insights into other branches of physics.

2. Some Relevant History

To appreciate just what the problem of reconciling geometrical optics
and electromagnetic theory amounts to we shall examine briefly the
historical background.

Geometrical optics was created to explain the nature and behavior
of light. Before the seventeenth century the knowledge of optics con-
sisted of fragments. Euclid gave the law of reflection, and the Alexandrian
Greeks concerned themselves with the phenomenon of refraction though
they did not succeed in finding the precise law. The Greeks also knew
that one could concentrate light by means of paraboloidal, spherical, and
ellipsoidal reflectors. The Arabians and medieval Europeans continued
the Greek efforts to obtain the law of refraction and performed experi-
ments on light. But until 1600 the knowledge of light and geometrical
optics was still fragmentary.

The science of geometrical optics was founded in the seventeenth
century. René Descartes and Willebrord Snell discovered the law of
refraction; Robert Boyle and Robert Hooke discovered interference;
Olaf Romer established the finiteness of the velocity of light; F. M.
Grimaldi and Hooke discovered diffraction; Erasmus Bartholinus dis-
covered double refraction in Iceland spar; and Newton discovered dis-
persion.

Two physical theories of light were created in the seventeenth century.
Christian Huygens formulated the geometrical ‘““wave’ theory of light,!
and Newton formulated a mechanical theory of propagation of particles.?
Huygens thought of light as a longitudinal motion of ether and as spreading
out at a finite velocity from a point source. The farthermost position
reached by the light in space filled out a surface which he called the front
of the wave. In Homogeneous media this surface is a sphere. To explain
further how light propagates, Huygens supposed that, when the dis-
turbance reached any point in the ether, this point imparted its motion

1 C. Huygens: Traité de la Lumaiére, 1690. An English translation is available from
the University of Chicago Press, Chicago, 1945, or Dover Publications, Inc., New
York, 1962.

2 I. Newton: Opticks, 1704. An English edition is available from Dover Publications,
Inc., New York, 1952.
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to all neighboring points. Thus, if the wave front (Fig. 1) at time ¢, were
the surface §; and if P were a typical point on S}, the point P communi-
cated its motion to all points in its neighborhood and from P the light
spread out in all directions. Its velocity in these various directions
depended on the nature of the medium. Thus in some small interval of
time (and in an isotropic medium) the front of the light emanating from a
point would be a sphere with P as a center. The same would be true at
any other point of the surface S,, except that the
radii of the spheres might differ as the medium
differs along S;,. The new position of the front at
some time £, greater than ¢, is the envelope in the
mathematical sense of the family of spheres attached
one to each point of ;. (According to this theory
there is also a backward wave. This backward
wave troubled scientists until Kirchhoff showed
under his formulation that it does not exist. We
shall not pursue this historical point.) To explain
reflection and refraction Huygens supposed that
the same phenomenon takes place at each point on
a reflecting or refracting interface when the front
reaches it, except, of course, that no waves pene-
trate a totally reflecting surface.

There are many more details to Huygens’
theory which explain other phenomena of geo-
metrical optics including double refraction. More
relevant for us, however, is the fact that Huygens
considered light as a series of successive impulses
each traveling as already described, and he did not
explain the relationship of the impulses to each
other. Thus the periodicity of light is not contained
in Huygens’ theory. Also, although the phenome-
non of diffraction had already been observed by Hooke and Grimaldi,
Huygens apparently did not know it, and so his theory did not consider
diffraction, although it could have covered at least a crude theory of this
phenomenon.

The second major theory of light was Newton’s. He suggested, in
opposition to Huygens’ “wave” theory, that a source of light emits a
stream of particles in all'directions in which the light propagates. These
particles are distinet from the ether in which the particles move. In
homogeneous space these particles travel in straight lines unless deflected
by foreign bodies such as reflecting and refracting bodies. To account for
the bright and dark rings which he observed when light passed through a

Figure 1
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plano-convex lens whose convex surface touched a plane surface Newton
supposed that the plane surface reflected in ““fits’’ which depended on the
varying distance between the convex and plane surfaces. He admitted,
however, that he did not know whether the light rays agitated the medium
(ether), or the two surfaces bounding the air gap, or whether there was a
vibrating or circulatory motion in the light stream itself. On the whole,
Newton’s theory was crude for the variety of phenomena he tried to
embrace, and he made many ad hoc assumptions. Nevertheless Newton
developed this mechanical theory so thoroughly that its completeness
and Newton’s own great reputation caused scientists, except for Euler
and one or two others, to accept it for 100 years. Huygens’ work was
ignored.

Despite the recognition in the seventeenth century of phenomena
such as diffraction, a limited theory of light, called geometrical optics,
was erected on the basis of four principles. In homogeneous media light
travelsin straight lines. Light rays from a source travel out independently
of one another. Light rays obey the law of reflection. And the rays obey
the law of refraction at abrupt or discontinuous change in the medium.
(The phenomenon of double refraction in crystals was also included by
supposing that the medium has two indices of refraction which depend
on position in space and the direction of propagation.)

All these laws follow from one embracing principle, Fermat’s principle
of least time. This principle presupposes that any medium is characterized
by a function n(z, y, z), the index of refraction (the absolute index or
index relative to a vacuum). The optical distance between two points P,
with coordinates (z,, y;, 2;) and P, with coordinates (x,, y,, z,) over any
given path is defined to be the line integral,

Py
f n(z, y, z) ds,

Py

taken over that path. Fermat’s principle, as stated by him and others
following him, says that the optical path, the path which light actually
takes, between P; and P,, is that curve of all those joining P; and P,
which makes the value of the integral least. This formulation is physically
incorrect, as can be shown by examples, and the correct statement is that
the first variation of this integral, in the sense of the calculus of variations,
must be zero. This principle has been applied to the design of numerous
optical instruments. It is to be noted that this principle or any other
formulation of geometrical optics says nothing about the nature of light.

The mathematical theory of geometrical optics received its definitive
formulation in the work of William R. Hamilton during the years 1824
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to 18443 Although Hamilton was aware of Fresnel’s work, which we shall
mention shortly, he ignored it. He was indifferent also to the physical
interpretation, that is, Huygens’ or Newton’s, and to a possible extension
to include interference. He was concerned with building a deductive,
mathematical science of optics. He did include doubly refracting media
(which are sometimes regarded as outside the pale of strict geometrical
optics) and dispersion.

Hamilton’s chief idea was the characteristic function, of which he
gave several types. The basic one expresses the optical length of the ray
which joins a point in the object space to a point in the image space as a
function of the positions of these two points. The partial derivatives of
this function give the direction of the light ray at the point in question.
Of the three other types of characteristic functions which Hamilton
introduced, one, the mixed characteristic, will be utilized in this book
(Chapter XI). He showed that from a knowledge of any one of these
functions all problems in optics, involving, for example, lenses, mirrors,
crystals, and propagation in the atmosphere, can be solved. From
Hamilton’s work the equivalence of Fermat’s principle and Huygens’
principle is clear.

Incidentally, two of the characteristic functions which Hamilton
introduced, the functions he designated by W and 7', were rediscovered by
Bruns (1848-1919) independently, who gave them the name’eikonal.

As we have already observed, geometrical optics cannot be regarded
as an adequate theory of light because it does not take into account
interference, diffraction, polarization, or even a measure of the intensity
of light. In the early part of the nineteenth century new experimental
work by Thomas Young, Augustin Fresnel, E. L. Malus, D. F. J. Arago,
J. B. Biot, D. Brewster, W. H. Wollaston, and others made it clear that a
wave theory of light was needed to account for all these phenomena.
Fresnel extended Huygens’ theory by adding periodicity in space and
time to Huygens’ wave fronts. Thereby interference was incorporated,
and Fresnel also used the extended theory to explain diffraction as the
mutual interference of the secondary waves emitted by those portions of
the original wave front which are not obstructed by the diffracting ob-
stacle.

Up to this time (1818) thinking on the wave theory of light (and for
that matter even the corpuscular theory) had been guided by the analogy

3J. L. Synge and W. Conway: The Mathematical Papers of Wm. R. Hamilton,
Vol. I, Cambridge University Press, London, 1931.

4+ H. Bruns: Das Eikonal, Abkandl. Math.-Phys. Kl. Sdchs. Akad. Wiss., 21, 1895,
323-436.



