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Preface

What is expected from a theory of differential equations? Look first at the
fundamental theorem for ordinary differential equations:

Theorem 0.1. Suppose that n is a positive integer and G is an open subset
of R x R™ which contains a point (¢, w). Suppose also that f : G — R™ is a
continuous function for which there is M > 0 such that

£t x) = f(ty)l| < M|z —y|| for all (t.x).(t.y) € G. (0.1)

Then there is an open interval (a,b) containing ¢ for which there is a unique
function w on (a,b) so that

u(c) = w, u'(t) = f(t,u(t)), t € (a,b).

This result can be proved in several constructive ways which yield, along
the way, error estimates giving a basis for numerical computation of solu-
tions. Now this existence and uniqueness result certainly does not solve all
problems in ordinary differential equations. For one thing, the result is only
local. For just one other instance, it doesn’t tell about two point boundary
value problems, even though it has relevance there. Nevertheless, it provides
a position of strength from which to study a wide variety of ordinary dif-
ferential equations. The fact of existence and uniqueness of a solution gives
us something to study in a qualitative, numerical or algebraic setting. The
constructive nature of arguments for the above result gives one a good start
toward discerning properties of solutions.

Many agree that it would be good to have a similar position of strength for
partial differential equations but such does not now exist. It has been argued
that there cannot be a central theory of partial differential equations since
there is such a great variety of problems. To such an argument I reply that
the same opinion about ordinary differential equations was probably held not
so much more than a century ago.

These notes are devoted to a description of Sobolev gradients for a variety
of problems in differential equations. Sobolev gradients are used in descent
processes to find zeros or critical points of functions which in turn provide
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solutions to underlying differential equations. Our gradients are generally
given constructively and do not require full boundary conditions (i.e., condi-
tions which are necessary and sufficient for existence and uniqueness) to be
known beforehand. The processes tend to converge in some (non-Euclidean)
sense to a nearest solution. The methods apply in cases which are mixed
hyperbolic and elliptic — even cases in which regions of hyperbolicity and
ellipticity are determined by nonlinearities. Applications to the problem of
transonic flow will illustrate this. Numerics are a natural part of the devel-
opment given here. In fact, numerics are in a sense ahead of theory, giving a
spur to more inquiry.

So, do we arrive at a position of strength for fairly general partial
differential equations? Here at least is a shadow of such a theory.

A key thing for a reader to keep in mind is that continuous steepest descent
with Sobolev gradients is expressed as an ordinary differential equations in
a function space whereas alternative descent methods are often partial dif-
ferential equations themselves (for example, see Chapter 16 in the case of
minimal surface problems).

Notes for Second Edition

The theory of Sobolev gradients has developed a great deal since the pub-
lication of the first edition of these notes. Many of these developments are
reflected in this second edition, which is about twice the length of the first one.

e The use of Sobolev gradients to find critical points of the Ginzburg-Landau
energy functional of superconductivity has greatly expanded. It is now near
the design stage for superconducting devices. P. Kazemi's recent discover-
ies play a substantial role here.

e The treatment of Newton’s method in the context of Sobolev gradients has
been expanded to include a version of the Nash-Moser inverse function the-
orem. The problem of ‘loss of derivatives’ has been avoided entirely, a fact
that leads to a relatively simple argument for such inverse function results
when applied to differential equations. It was first pointed out by A. Castro
that considerations for gradient inequalities have much in common with
Moser’s development of an inverse function theorem.

e The Tricomi equation, showing both elliptic and hyperbolic regions, has
been treated using Sobolev gradients.

¢ A number of new convergence results for continuous steepest descent are
included.

e Work on the hyperbolic Monge-Ampere equation, due to T. Howard, is
described. This work opens up a new aspect of the study of such equations.

o Use of Sobolev gradients for nonlinear Schrodinger equations is noted.

e A greatly expanded list of properties of the imbedding operator which
connects a Hilbert space with a dense linear subspace which is a Hilbert
space in its own right. Much of this is due to P. Kazemi.
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o After the first edition of this work was published, it was realized that this
author’s previous use of what is called ‘gradient inequality’ was preceded
by Lojasiewicz inequalities in finite dimensions.

e There is reference to gradient inequality results work of S. Huang and of
R. Chill.

e There is an account of Chan-Hilliard equations by S. Sial, T. Lookman,
A. Saxena and the present writer.

e There are Sobolev gradient results for fractal regions.

e Some least squares results are given which have application to the problem
of separating actual chaos from apparent chaos induced by discretization.

e A new result is given which relates nonlinear semigroup theory to the
problem of boundary or supplementary conditions for partial differential
equations.

In the first edition, several authors contributed sections on their work with
Sobolev gradients. In the second edition, several have kindly agreed to write
a chapter on their work. These include

e A development of numerical integration by means of Sobolev gradients, by
Ian Knowles and Robert Wallace.

e A discussion of relationships between Sobolev gradients and precondition-
ing, by Janos Karatson.

e A presentation of curve fitting in the context of Sobolev gradients, by
Robert Renka.

e Results on sign changing solutions and Morse index problems, by John
M. Neuberger.

¢ OQil-water separation, elasticity and Model A problems, by Sultan Sial.

Robert Renka and I have had regular discussions about Sobolev gradients
for more than two decades. Many others, particularly John M. Neuberger,
have read portions of these notes and have contributed corrections and helpful
suggestions. Any remaining errors and obscurities are mine. Many students,
colleagues, collaborators and others have provided substantial insights. Any
attempt at a list acknowledging this help would contain many names but
would likely be inadequate. Hence I have decided to not try to make such
a list.

I express profound gratitude to Springer for their help and extraordinary
patience. '
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Chapter 1
Several Gradients

These notes contain an introduction to the idea of Sobolev gradients and how
they can be used in the study of differential equations. Numerical consider-
ations are at once a motivation, an investigative tool and an application for
this work.

First recall some facts about ordinary gradients. Suppose that for some
positive integer n, ¢ is a real-valued C'!) function on R". It is custom-
ary to define the gradient V¢ as the function on R"™ so that if x =
(z1,22,...,2p) is in R™, then

¢1(x1, -, x0)
(Vo)(x) = : (1.1)
¢n(l‘la S A 7-1"11)

where ¢;(x1,...,zy) is written in place of d¢/dx;, i =1,2,...,n.
The gradient V¢ has the property that

lim %(q&(m +th) — ¢(x)) = ¢'(x)h = (h, (Vé)(x)) g, x h € R®,  (1.2)

and
Rn = sup |¢'(z)h|, x,h € R".
heR™ [|h]] jpn =1

(Vo) ()]

Note that (1.2) can be taken as an equivalent definition of V.
For ¢ as above but with (-,-)s an inner product on R™ different from the
standard inner product (-,-) g, there is a function Vg¢ : R* — R™ so that

¢’ (x)h = (h,(Vso)(z))s, x,h € R"

since the linear functional ¢'(x) can be represented using any inner product
on R™. Say that Vg¢ is the gradient of ¢ with respect to the inner product
(,-)s and note that the gradient Vg¢ has properties similar to those of the
ordinary gradient V¢ above except for expression, (1.1).

J.W. Neuberger, Sobolev Gradients and Differential Equations, Lecture 1
Notes in Mathematics 1670, DOI 10.1007/978-3-642-04041-2_1,
(© Springer-Verlag Berlin Heidelberg 2010
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From linear algebra, there is a linear transformation
A:R" - R"
which relates these two inner products in such a way that if =,y € R", then
(z,y)s = (z, Ay) R~
Some reflection leads to
(Vso)(x) = A~/(Vo)(z), z € R". (1.3)

Taking a cue from Riemannian geometry, one can have for each z € R"
an inner product
{+)z

on R™. That is, each point of R™ can have its own inner product space.
Consider such an assignment made together with a selection of a real-valued
C' function ¢ on R™. Then for z € R", define V,¢ : R® — R™ so that

¢’ (x)h = (h,(V.0)(x))z, T,h € R™.

For such a gradient system to be of much interest, the corresponding family of
inner products, one inner product for each member of R™, should be related
to each other in an orderly way. This is similar to the case of Riemannian
geometry in which it is required that inner products be assigned to tangent
spaces in a differentiable fashion. In later chapters there are some natural
assignments of inner product spaces, some related to Newton’s method, and
some related to minimal surface problems.

Concrete aspects of the above discussion begin in the following chapter
and continue throughout these notes. Most of these considerations apply to
Hilbert spaces and, in a somewhat limited way, to more general spaces. Finite
dimensional cases are for us synonymous with numerical considerations.

A central theme in these notes is that a given function ¢ has a variety
of gradients depending on choice of metric. More to the point, these various
gradients have vastly different numerical and analytical properties even when
arising from the same function. I first encountered the idea of variable metric
in [174] where, in a descent process, different metrics are chosen as a process
develops. Karmarkar [96] has used the idea with great success in a linear
programming algorithm. In [104] and others, Karmarkar’s ideas are developed
further. This writer has developed this idea (with differential equations in
mind) in a series of papers starting in [145] (or maybe in [141]) and leading to
[159,161,163]. Variable metrics are related to the conjugate gradient method
[80]. Some other classical references to steepest descent are [38,50,208].
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A ‘Sobolev gradient of ¢’ is a gradient of a ¢ when its domain is a finite
or infinite dimensional Sobolev space.

There are two related versions of steepest descent. The earliest reference
known to me for steepest descent is Cauchy [38]. The first version is discrete
steepest descent, the second is continuous steepest descent.

Suppose one has an inner product (-, -)s on a Hilbert space H, a real-valued
C'! function ¢ on H and its gradient Vs¢. By ‘discrete steepest descent’ is
meant an iterative process

Tp = Tp—1 _6n—1(v5¢)(mn71)7 n=1,23, .., (14)

where zg is given and 8, _1 is chosen to be the number § which minimizes,
if possible,
¢(xn—1 - 5(VS¢)(xn—l))7 b€ R.

On the other hand, continuous steepest descent consists of finding a func-
tion z : [0,00) — H so that

20) =z € H,2'(t) = —(Vso)(2(t)), t > 0. (1.5)

Continuous steepest descent may be interpreted as a limiting case of (1.4) in
which, roughly speaking, various J,, tend to zero (rather than being chosen
optimally). Conversely, (1.4) might be considered (without the optimality
condition on 4) as a numerical method (Euler’'s method) for approximating
solutions to (1.5).

Using (1.4) one seeks u = lim, o0 Tp, so that

é(u) =0 (1.6)
or

(Vsd)(u) = 0. (1.7)

Using (1.5) one seeks u = lim;_. 2(t) so that (1.6) or (1.7) holds. Before
more general forms of gradients are considered (for example where A in (1.3)
is nonlinear), Chapter 2 gives an example intended to convince a reader
that there are substantial issues concerning Sobolev gradients. It is hoped
that Chapter 2 provides motivation for further reading even though later
developments do not depend on proofs in Chapter 2. These arguments might
be skipped in a first reading.

This introduction is closed with the indication of two applications of steep-
est descent:

(a) Many systems of differential equations have a variational principle, i.e.
there is a function ¢ such that u satisfies the system if and only if u is a
critical point of ¢. In such cases one tries to use steepest descent to find
a zero of a gradient of ¢.
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(b) In other problems a system of nonlinear differential equations is written
in the form
F(z)=0, (1.8)

where F' maps a Banach space H of functions into another such space K. In
some cases one might define for some p > 1, a function ¢ : H — R by

.'1,‘=l xr 14 T
o) = JIIF@I, = € H.

and then seek z satisfying (1.8) by means of steepest descent.
Problems of both kinds are considered. The following chapter contains an
example of the second kind.



Chapter 2
Comparison of Two Gradients

This chapter gives a comparison between conventional and Sobolev gradients
for a finite dimensional problem associated with a simple differential equation.
On first reading one might examine just enough to understand the statements
of the two theorems. Nothing in the following chapters depends on the tech-
niques of the proofs of these results. Although I expect similar theorems to
exist for most systems of differential equations.

In this chapter, all norms and inner products which do not have a subscript
are standard Euclidean.

Suppose that ¢ is a C® real-valued function on R™ and V¢ is the gradi-
ent associated with ¢ by means of the positive definite symmetric matrix A,
as in the previous chapter. A measure of worth of Vg¢ in regard to a descent
process is

Pz — 9:(Vs9)(x))
zERf}jﬁl()z)aéO o(x) (2.1)

where, for each x € R™, §, € R is chosen optimally, i.e. a number § which
minimizes

o(x — 6(Vso)(z)), 6 >0 (2.2)
or, perhaps, is the least positive critical point of the above indicated function.
Generally, the smaller the value in (2.1), the greater the worst case improve-
ment in each discrete steepest descent step. It is remarked that (Vg¢)(x) is
a descent direction at x (unless (Vs@)(z) = 0) since if

f(0) = ¢(z = 6(Vs9g)(x)),6 > 0,
then
F1(0) = =[[(Vs¢)(@)|IE < 0.
Equation (2.1) is used to compare performance of two gradients arising from

the same function ¢. For a simple example, choose ¢ so that

#(u) = u’ —uon [0, 1], u absolutely continuous. (2.3)

J.W. Neuberger, Sobolev Gradients and Differential Equations, Lecture 5
Notes in Mathematics 1670, DOI 10.1007/978-3-642-04041-2_2,
(© Springer-Verlag Berlin Heidelberg 2010
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For each positive integer n and with v, = %, define ¢, : R*"*! — R so that if
€ = (2o, L1, ..., Tn) € R,

then

1 & Ti — Ti—i Ti+ Ti—1,o
T)= = — . 24
On() = 3 ;( — ) (24)

Consider first the conventional gradient Vo, of ¢,. Pick y € C® so that at
least one of the following hold:

y'(0) —y(0) #0, y'(1) —y(1) #0. (2.5)

Condition (2.5) amounts to the requirement that y’ —y not be in the domain
of the adjoint of

L:Lz=z -z, z absolutely continuous on [0,1], (2.6)
this adjoint being given by
L'w = {—(w' + w) : w absolutely continuous ,w(0) = w(1) =0}, (2.7)

(cf. [56]). Define a sequence of points {w"}>2,, w™® € R"*', n = 1,2,...,
which are taken from y in the sense that for each positive integer n, w" is
the member of R"*! so that

i, .
wi =y(=), 1 =01, (2.8)

It will be shown that the measure of worth (2.1) deteriorates badly as the
number of grid points approaches co. Specifically,

Theorem 2.1.
(Von)(w™)

dn(w™)

where for each positive integer n, 6, is chosen optimally in the sense of (2.2).

lim ¢,(w" — é, ) =1,
n—0oo

This theorem expresses what many have seen in trying to use conventional
steepest descent on differential equations. If one makes a definite choice for
y with, say v'(0) — y(0) # 0, then one finds that the gradientsf (V¢, )(w™),
even for n quite small, have very large first component relative to all the
others (except possibly the last one if (1) — y(1) # 0). This in itself renders
(V) (w™) an unpromising object with which to perturb w™ in order that

w"t = w™ — 5, (V) (w")



