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Preface

The field of physical organic chemistry may easily be considered to have
originated with the publication of Hammett’s classic text bearing that
title. Much good work of this type had been done previously. However,
the development of this field as one of major interest to organic chemists
occurred in the mid 1940’s after the publication of Hammett’s book.
More recently, several related works have appeared. The trend in these
books has been to concentrate on the organic chemical aspects and to
minimize the physical chemistry involved.

The present work represents an experiment in producing a useful text
which would concentrate on the more physical chemical aspects. Since
it was designed as a text rather than as a reference book, it has been
necessary to select the topics considered with some care, and many
interesting subjects and extensions of the subjects covered have been
omitted in order to pare the mass of information which is available into an
amount which could be covered in a reasonable length of time. My
choice of subjects will undoubtedly not be universally agreeable. How-
ever, if the experiment proves to be a reasonable success, the experience
gained by those who use this book will be a guide to future improvement.

The work is designed for a one-year graduate course, possibly in con-
junction with a text which will present the more organic chemical aspects.
The latter have been minimized herein because of the availability of texts
emphasizing this aspect and because of a desire to minimize duplication
of material.

The subject has been divided into three parts: Bonding and Spectra,
Equilibria, and Kinetics. A considerable amount of integration has been
possible so that material presented in one part is used as much as possible
in a later part. The first sections of each part contain material which
often will be covered in other courses. This material is included mainly
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as a review. Throughout the work, specific examples have been considered
so that the student may see how the material presented may be applied to
the study of organic compounds. Problems and reading lists have also
been provided for many sections in order to help the student in gaining a
good understanding of the material.

The final section, the Appendix, contains a variety of material which is
designed to be useful. It contains a review of matrix algebra, tables of
constants and other numerical data, and discussions of the practical
treatment of nuclear magnetic resonance data and of kinetic data for
reactions having complex rate laws. The final section of the Appendix
includes a discussion of computer programming, since this subject is
becoming of increasing importance to organic chemists, and since com-
puters are now becoming fairly generally available. This is followed by
some examples of computer programs which may be of interest to organic
chemists.

Finally, I must acknowledge the contributions of former teachers and
colleagues who started and nurtured my interest in physical organic
chemistry. I should like especially to recognize the contribution of those
at the University of Washington from whom I learned much and from
whom I “borrowed’” many ideas on how to present this material. Much
of the work was written in Karlsruhe, Germany, during tenure of J. S.
Guggenheim and A. P. Sloan fellowships. I wish to thank these organi-
zations for their assistance and Professor R. Criegee, also, for making
facilities available at the Technische Hochschule in Karlsruhe.

KENNETH B. WIBERG

New Haven, Conn.
November 1963
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PART ONE

Bonding and Spectra

1-1 Introduction

Any consideration of the theoretical aspects of organic chemistry must
begin with a discussion of the nature of covalent bonding. Ideas of
bonding have always played a central role in the development of organic
chemistry, and the greatest achievement of organic chemistry—the
development of the structural theory—is a direct outgrowth of the early,
qualitative attempts to find an explanation for the attractive forces between
atoms.

A modern consideration of the nature of covalent bonding and other
attractive forces cannot be made without using quantum chemistry as the
frame of reference. In order to do this as expeditiously as possible, the
following discussion will first consider the principal approximation
methods which are available and then some applications of these methods
to problems of interest to organic chemists. -

It will also be seen that a quantitative treatment of bonding will lead
directly to the energy levels of each state of bonding of a given molecule.
Since the observed spectra of molecules are related to the transition from
one of these energy states to another, the following treatment will also
permit a consideration of the spectral properties of compounds.

1



2 Bonding and Spectra

1-2 The Wave Nature of the Electron

In many ways electrons exhibit wavelike properties. For example,
electrons will be diffracted in much the same way as ordinary light, the
main difference being in the wavelength and thus in the spacing in the
grating required in order to observe an effect. With ordinary light, a
grating ruled with 1 to 10 thousand lines per centimeter is satisfactory,
but with an electron beam, because of its shorter wavelength, no ordinary
grating is adequate, and a crystal with its small distance between nuclei
is used in order to observe diffraction.!

Accepting the wave nature of an electron, we can first qualitatively
consider the effects of restraint on a species of this type. Suppose the
particle having wavelike character were contained inside a one-dimensional
box (Fig. 1-1) (i.e., it is permitted to move only along the z axis for a
distance a). In order for the electron to be in a stationary state (of which
more will be said later), we must also assume that the wave starts and
finishes at the ends of the box. Thus the first wave we may draw is one
which begins and finishes at the ends of the box and has no nodes. The
next wave would have one node, the third would have two nodes, and so
on.

Since for a wave of a given amplitude the energy increases with in-
creasing frequency, it is apparent that the wave-having no nodes has the
lowest energy, what with pne node is of higher energy, and that the energy
of the state increases as the number of nodes increases. As will be seen
later, for a given system this is, in general, the relationship between the
possible wave functions and the energies.

n=1 n=2 n=3

Fig. I-1. Possible waves for a particle in a box.

1 For a review of the application of electron diffraction in studying molecular structure,
see L. O. Brockway, Revs. Modern Physics, 8, 231 (1936).



The Postulatory Basis of Wave Mechanics 3

n=0 n=1 n=2

(no nodes) (one node) (two nodes)

Fig. 1-2. Possible waves for a particle on a circle.

Another simple case is the particle on a circle. The particle is restrained
to move along the circumference of the circle, and the waves corresponding
to it are perpendicular to the plane of the circle. In order to obtain a
stationary state the wave must return on itself, and therefore the possible
wavelengths will be determined by the size of the circle. The first wave will
have an infinite wavelength and no nodes, the second will have a nodal
line bisecting the circle, and the next will have two nodal lines perpendicular
to each other (Fig. 1-2). Again, the energy of a state will be a function of
the number of nodes, that with no nodes having the lowest energy.

Reference

Development of Wave Mechanics:
J. C. Slater, Quantum Theory of Atomic Structure, McGraw-Hill Book Co., New
York, 1960, vol. I, pp. 1-50.

1-3 The Postulatory Basis of Wave Mechanics

The preceding treatment will, of course, not give the energies of the
possible states for these systems and cannot easily be extended to the more
complex cases. Therefore we shall now examine the treatment of some of
these cases by the use of wave mechanics. Certain postulates are funda-
mental to wave mechanics and have been developed by a consideration of
the nature of the equations describing classical systems which are best
considered as involving particles on the one hand and those considered as
involving waves on the other. In a sense the postulates are not capable of
direct proof, their validity being demonstrated by one’s ability to calculate
precisely the results of measurement by their use. The postulates may be
stated in a number of possible ways. One way, which will be convenient
for our purposes, is the following.
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1. The fundamental equation of wave mechanics is

ap = Ay

where « is an operator, y is the wave function or eigenpsi, and 1 is the
eigenvalue. The wave function is an expression describing the wave
nature of the electron or other particle being considered, taking into
account the restrictions imposed on it. The operator « simply does some-
thing to the wave function on which it operates. For example, the
operation might be differentiation with respect to the coordinate, . The
nature of the operator to be used in a given problem will be discussed in
more detail below. The eigenvalue 4 is the value of the quantity corre-
sponding to the nature of the operator used. Thus, for example, if one used
the total energy operator, the value of 1 would be the energy of the
system.

2. For every dynamical quantity in classical physics, such as the distance,
momentum, kinetic energy, and potential energy, there is a corresponding
wave mechanical operator. In order to obtain the latter one writes the
classical equation and replaces « by # and p (momentum) by (—ik/27)(9/0x).
Thus the kinetic energy T is given by

2
T=imv® = 2p_ (since p = mv)
m

and the kinetic energy operator Top is

2 2
Top = Dop e 27 ax _ —h

2m 2m N o2
8mim (5;)

For a three-dimensional system, the latter is taken over all three co-
ordinates.

3. For every state there is a corresponding wave function. The square
of a wave function gives a probability. If a wave function is a description
of the wavelike nature of a particle, then the square of the wave function
should be analogous to an intensity (the square of the amplitude of a
light wave gives the intensity of the light). The only meaningful concept of
this type is the probability of finding the particle.

4. The only possible results of the measurement of a dynamical variable
are the eigenvalues obtained from the wave equation. Thus there is an
exact one-to-one correspondence between the values which are measured
and those obtained from the wave equation.
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In order to have the wave functions correspond to physical reality, they

must have certain properties. First, the integral of y? taken over all
space must be finite:

oo
f v® dr = a finite value
This follows from the statement that y? gives a probability. The integral
then gives the total probability, which for a real case must be finite.
Further, the wave function must be continuous and single valued. If this
were not the case, then at some point in space there would be more than
one value of the wave function and more than one value of the probability.

This is impossible for any real case. These are the restrictions which make
the wave function “well behaved.”

1-4 Some Simple Examples

We can understand these postulates best by considering some simple
examples. The simplest case we may treat is that of a free particle, which
has only kinetic energy. Let us first obtain the possible results of a
measurement of the momentum of the particle. We can write

Popy = Py
where pop is the momentum operator and p represents the eigenvalues of the
momentum. According to postulate 2, we replace pop by (—ih/27)(0/0x)
and obtain

ih (a_w

" 2n\ox

2w ) — P

The form of y must now be determined. It can be seen that in order to
obtain a satisfactory wave function for this problem, the first derivative of
v with respect to  must be equal a number times . The type of function
which will have this property is e** for

4
dx

aeaa:

ar

It can be shown that for this case a is equal to 2i/l,2 where / is the wave-
length of the wave associated with the particle. Making this substitution,

2 K. S. Pitzer, Quantum Chemistry, Prentice-Hall, New York, 1953, p. 15.
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one obtains

ih 0 srion _ = smisht
_—— = pe
27 Ox &
_ihomi
2.l f
h
-=p

l

This dependence of momentum on Plank’s constant divided by the
wavelength has been verified for a number of particles. In particular,
electron diffraction experiments are a good test, for the momentum of the
electron is a function only of the voltage used to accelerate it, and its
wavelength may be determined from the spacings in the electron dif-
fraction patterns of compounds whose crystal structure have been
determined by X-ray studies. The above may be considered a partial
justification for the nature of the wave function and operator which
was used.

It should be noted that this result does not indicate any restrictions on
the values of momentum which are allowed. This is the general result for
all cases in which the particle is not bound (restricted to a certain portion
of space).

We may now determine the results of a measurement of the energy of a
free particle. The particle has only kinetic energy, and this is given by

2

T=3im? =2
b 2m
The wave equation is then
Topy = Ey
2
or Fop v = Eyp
2m

where E is the value of the energy. Making the previously described
substitution for pop, we obtain

B oty _
8mn® 0x*
The y used in determining the momentum will still apply here, and thus

h® 9
8mn® da®
Performing the indicated operation, we obtain

h2
2ml*

2riw/l Ee2m’m/l
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Here again the value of E is not quantized (restricted to certain definite
values), but, rather, any values are possible, depending only on the
wavelength of the particle.

We may now turn to two problems in which the particle is bound and
in which we would expect to obtain a set of discrete energy levels. These
are the particle in a box and the particle on a circle, the cases which were
considered in a qualitative way in Section 1-2. For the particle in a box
the wave function can be well behaved in the sense that it is single valued
only if the wavelength / is related to the length of the box a by

2a

— n=1,2,3,...
n

(cf. Fig. 1-1).> Introducing this value of / into the wave function used
previously, we obtain

Y= eirmm/a
The permissible energy levels are then obtained from
2 2 Topw = Ey)
- L _a_ ez’iram/a - Eeiﬂzn/a
8mm® 0x?
2.2
h°n” _ E
8ma®

Here we see that only certain values of energy are possible and that these
are a function of the size of the box and of the quantum number n. The
energy distribution is then

) E = 9h2%/8ma?
n=2 E = 4h%/8ma?
n=1 E = h?%/8ma?

It may be noted that the energy required in going from one level to the
next decreases as the size of the box increases. A simple molecular
analogy to this case is a linear conjugated system. Here the box consists
of the p orbitals which make up the = molecular orbital. Thus the length
of the box is the length of the conjugated system. Consider the case of the
polymethinium systems having m equal to 1, 2, 3, and 4.

(CH,),N—(CH—CH),,—CH—N(CH,),

3 This may perhaps be more easily seen by writing the wave function of the energy
operator in the equivalent form ¢ = sin (27/), where / is again the wavelength of the
particle.
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The spacing between the energy levels will vary with m because of the
change in length of the conjugated system. The bond lengths are not
known but may be taken as approximately 1.40 A. Since alkyl groups are
known to stabilize positive charges (cf. Section 1-15), the methyl groups
probably contribute something to the length of the conjugated system, and
this contribution was taken as approximately 4 the C—C bond distance.
Thus the values used were 6.53, 9.33, 12.13, and 14.93 A for m equal to
1-4, respectively. The energy diagram for these conjugated systems
calculated from the particle in a box approximation is given in Fig. 1-3.
The «’s represent the electrons in the conjugated system and are placed two
to an energy level in accordance with the Pauli exclusion principle.
The lowest energy ultraviolet transition for these compounds would
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Fig. 1-3. Energy levels for some polymethinium ions.
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correspond to the excitation of an electron from the highest filled level to
the lowest unfilled level. This is shown by the vertical dotted lines in Fig.
1-3. The difference in energy may be converted to the frequency of the
light which would be absorbed in causing this transition by the relation-
ship AE = hv, and the wavelength 4 would be given by 4 = c/v, where ¢
is the velocity of light (3.00 x 10 cm/sec). The calculated wavelengths
and the corresponding observed values* are shown in Table 1-1. Con-
sidering the very simple approximation used, the agreement between the
calculated and observed values is remarkably good.

Table 1-1 Spectra of Some Poly-
methinium Ions

m Calculated Observed
1 2830 3100 A
2 4120 4120
3 5420 5100
4 6720 6600

A particle on a circle may be treated in the same way. In order for the
wave function to be single valued and continuous, the wavelengths must
be

=2 n=0,12,...
n
where r is the radius of the circle (cf. Fig. 1-2). Substitution into the wave
function previously used gives

1/) = eimn/r
The wave equation is then
Topy = Ey
_ 8h2 258_25 eimn/r — Eeimn/r
mm® 0%
h2n®
=E
8mPmr?

With the exception of the first energy level where n =0 and p =0,
each of the energy levels may arise from either +p or —p as the momentum
(corresponding to the particle moving around the circle in a clockwise or a
counterclockwise direction). Thus for every value of n above the first there

4 H. J. Dauben, Jr. and G. Feniak, unpublished results.
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are two states with the same energy. They are referred to as degenerate
states. The energy level distribution for a particle on a circle is then

n=3 E = 9n%/8n%mr?
n=2 E=4h2/87r2mr2
n=1 E = h%/872 mr?
n=0 E=0

Having this result, we may again look for a physical system which re-
sembles this case and then try to apply the result as an approximation. A
particularly good analogy is benzene, in which we may consider the
electrons in a given energy level as being relatively free to travel in a
circle of a radius equal to that of the ring. Again, placing two of the un-
saturation electrons in each energy level, the distribution of these electrons
in benzene would be

n=2

n=0

where the 2’s represent the electrons. A transition from the highest filled
level (n = 1) to the lowest unfilled level (n = 2) would require the energy

2
AE = @ — DK
8m°mr?

Using the additional relationships, AE = hv and 4 = c¢/», the wavelength
corresponding to this transition would be given by

2 2
l=8'nmrc
3h

If we make the appropriate substitutions (2 = 6.63 x 10~%7 erg-sec, m =
9.04 x 10728 g, and ¢ = 3.00 X 10'° cm/sec), this becomes

A =10.76 x 102




