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Preface

This book presents a unified treatment of certain topics in analysis on semigroups,
in particular, those topics that pertain to the functional analytic and dynamical
theory of continuous representations of semitopological semigroups.

It is well known that the study of such representations is facilitated by the use
of semigroup compactifications. The importance of compactifications in this re-
spect derives from the fact that the dynamical and structural properties of a given
representation frequently appear as algebraic and/or topological properties of an
associated semigroup compactification. Thus the introduction of a suitable com-
pactification makes available powerful results from the theory of compact semi-
groups. The interplay between the dynamics of semigroup representations and the
algebraic and topological properties of semigroup compactifications is the main
theme of this book.

A representation of some importance to us is the so-called right regular repre-
sentation, which is the representation of a semigroup S by right translation oper-
ators on the C*-algebra B (S ) of bounded, complex-valued functions on S. The
study of this representation reduces essentially to the study of translation invariant
subspaces of B (S). A significant portion of the monograph is devoted to the in-
vestigation of the structure of these function spaces and the dynamical properties
of their members.

The subject of analysis on semigroups can trace its origins back to the work of
H. Bohr (1925, 1926) on almost periodic functions on the real line. Bohr’s defi-
nition of almost periodic function (which is found in Chapter 4 under Example
1.2(c)) is a natural generalization of that of periodic function, and his original
methods involve reduction to the periodic case. In 1927, S. Bochner gave a func-
tional analytic characterization of almost periodicity, and this led J. von Neumann
(1934a) and Bochner and von Neumann (1935) to develop a theory of almost pe-
riodic functions on an arbitrary group. Subsequently, A. Weil (1935, 1940) and
E.R. van Kampen (1936) used group compactifications to show that the theory of
almost periodic functions on a discrete group may be reduced to the theory of
continuous functions on a compact topological group.

As a specific illustration of the utility of semigroup compactifications, consider
the almost periodic compactification of the additive group = of real numbers. By
definition, this compactification consists of a pair (¥, G ), where G is a compact,
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viii Preface

Hausdorff, topological group and ¥ is a continuous homomorphism from ~ into G
such that { fo ¢: fe C(G)} is the space of almost periodic functions on .
Here, C(G) denotes the subalgebra of B (G ) consisting of the continuous func-
tions. Now, a classical result in the theory of almost periodic functions on = asserts
that each such function may be uniformly approximated by trigonometric poly-
nomials. Bohr’s proof of this result relies on his theory of periodic functions of
infinitely many variables. The defining property of the compactification (¢, G),
however, allows one to infer this result immediately from the Peter-Weyl theorem.

Generalizations of the classical theory of almost periodicity have taken several
directions. We mention a few of those that are of particular interest to us. First,
Bochner’s definition of almost periodic function on a group does not make use of
the existence of inverses in a group and hence applies equally well to semigroups.
Furthermore, the definition of continuous almost periodic function on a topological
croup does not involve the joint continuity property of multiplication. Thus the
natural domain of a continuous almost periodic function (and the setting of the
modern theory of almost periodicity) is a semitopological semigroup, that is, a
semigroup with a topology relative to which multiplication is separately continu-
ous. Apart from their suitability in this context, such semigroups have become
important in applications, as they arise naturally in the study of semigroups of
operators on Banach spaces.

A second direction the theory of almost periodicity has taken is the broader
study of functions of ‘‘almost periodic type.’’ An early example of such a function
is the weakly almost periodic function, which was first defined and investigated
by W. F. Eberlein (1949). Although these functions have many of the character-
istics of almost periodic functions (e.g., the space of weakly almost periodic func-
tions on a group admits an invariant mean), there are essential differences between
the two kinds of functions. These differences show up clearly in the structure of
the associated compactifications: the almost periodic compactification of a semi-
eroup is always a topological semigroup (i.e., multiplication is jointly continuous),
whereas the weakly almost periodic compactification is, in general, only a semi-
topological semigroup.

Another direction the theory has taken is the investigation of almost periodic
properties of representations of a semitopological semigroup S by operators on an
arbitrary Banach space. Here, the notion of almost periodic function is replaced
by the more general concept of almost periodic vector. This generalization of al-
most periodicity was initiated by K. Jacobs (1956) and was further developed by
K. de Leeuw and I. Glicksberg (1961a). The basic idea is this. If s = Uj is a
continuous representation of S by operators on a Banach space X, one defines the
space X, of almost periodic vectors in X as the set of all vectors x such that Ugx
is norm relatively compact. Then X, is a closed subspace of X, which reduces to
the space of almost periodic functions if X = C(S) and U, = R;. By replacing
the norm topology in the previous definition by the weak topology one obtains the
space X,, of weakly almost periodic vectors in X. Such vectors occur in great pro-
fusion in representation theory. For example, if Us is uniformly bounded and X is
a reflexive Banach space, then every vector in X is weakly almost periodic. The
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point here is that dynamical properties of the representation U on the space X,.
may be deduced from the algebraic structure of the weakly almost periodic com-
pactification of §.

An effective tool in the study of semigroup representations is the invariant mean.
For example, it is the existence of such a mean on the space of weakly almost
periodic functions on a group that guarantees that a representation U on X,, pos-
sesses certain desirable dynamical properties. Here again, compactifications are
useful, since a mean may be represented as a probability measure on an associated
compactification and hence may be studied by measure theoretic methods.

The book falls roughly into four parts. The first part, Chapter 1, is the study of
semigroups with topology. In the first two sections of the chapter we develop the
requisite algebraic theory of semigroups. Section 1 presents the elementary aspects
of the theory, whereas Section 2 gives a detailed description of the structure of the
minimal ideal of a semigroup with minimal idempotents. In Section 3 we introduce
the notions of right topological, semitopological, and topological semigroup and
prove the fundamental structure theorems for compact right topological semi-
groups. Section 4 takes up the problem of generating points of joint continuity for
separately continuous actions. The results of this section are used in Section 5 to
refine the structure theorems of Section 3. In Section 6 we give a brief introduction
to the general theory of flows and conclude the section with I. Namioka’s flow
theoretic proof of Ryll-Nardzewski’s celebrated fixed point theorem.

The second part of the book, Chapter 2, develops the general theory of means
on function spaces. The basic properties of means are assembled in Section 1. In
Section 2 we introduce the notion of introversion, which is the essential ingredient
in the theory of semigroup compactifications as developed in this monograph. Sec-
tions 3, 4, and 5 discuss some of the more important features of the theory of
invariant means on semigroups. (Sections 4 and 5 are somewhat more specialized
than the other sections and may be omitted on first reading.)

In Chapter 3, which comprises the third part of the book, we construct the
machinery of semigroup compactifications. The general theory of semigroup com-
pactifications is presented in Section 1. In Section 2 we introduce the basic device
used in the construction of universal compactifications, namely subdirect products.
The fundamental theorem on the existence of universal compactifications is given
in Section 3, along with many examples. In Section 4 we develop the theory of
affine compactifications.

The final part of the book consists of Chapters 4, 5, and 6. In these chapters,
we use compactifications to determine the dynamical behavior of semigroup rep-
resentations. The right translation representation, which is the subject of Chapters
4 and 5, is studied in terms of the structural properties of various spaces of func-
tions of almost periodic type. In all, 10 distinct types of functions are investigated,
starting with the space of (Bochner) almost periodic functions and ending with the
related class of Bohr almost periodic functions. In Chapter 6 we take up the study
of arbitrary weakly almost periodic representations of semigroups. The general
theory is developed in the first two sections, and applications to ergodic theory
and Markov operators are given in Sections 3 and 4.
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Appendices on weak compactness, joint continuity, and invariant measures are
included at the end of the book.

The book contains more than 200 exercises. These range from simple applica-
tions and examples to significant complements to the theory. Many of the more
difficult exercises are supplied with hints.

The prerequisite for reading the book is a working knowledge of the basic prin-
ciples of functional analysis, general topology, and measure theory as found, say,
in the core curriculum of a traditional U.S. or Canadian Master’s Degree program.

The book is organized as follows. Each of the six chapters is divided into sec-
tions. In each section, theorems, corollaries, propositions, definitions, remarks,
examples, and exercises are numbered m.n, where m is the section number and n
the number of the item within the section. Cross references to items inside the
current chapter are written (m.n), whereas references to items outside the chapter
are written (k.m.n), where k is the number of the chapter containing the item.
Section m of Chapter k is referred to as Section k.m outside Chapter k and simply
as Section m inside the chapter. The three appendices are labelled A, B, and C.
The nth item of Appendix A, say, is marked and cross-referenced as A.n.

Bibliographical references are given in the Notes section at the end of each
chapter. Although we do not claim completeness for the bibliography, the listing
is sufficiently detailed to allow further investigation of the topics presented in this
monograph. Failure to cite a reference for a particular result should not be taken
as a claim of originality on our part.

Finally, we would like to acknowledge our indebtedness, spiritual and other-
wise, to the many mathematicians who have influenced us before and during the
preparation of this monograph. We mention in particular J.W. Baker, M.M. Day,
K. de Leeuw, I. Glicksberg, K.H. Hofmann, T. Mitchell, I. Namioka, and J.S.
Pym.

JOHN F. BERGLUND
HuGo D. JUNGHENN
PAUL MILNES

Virginia Commonwealth University, Richmond
George Washington University, Washington, D.C.
The University of Western Ontario, London



Summary of Notation

We indicate here the notational conventions and basic terminology that will be
used throughout the book.

The symbols 1, 7, ©, 7, © denote the sets of natural numbers, integers, ra-
tlona] numbers, rea] numbers and complex numbers, respectwely We also define
=[0,»),Z" =ZNR",Q*=0NR",T={zeC:|z] =1}, and

“ ={z€C: IZI = 1}.

Unless otherwise stipulated, we shall take the scalar field of a vector space to
be the field of complex numbers. If & and Y are Banach spaces or, more gener-
ally, locally convex topological vector spaces, then £ (9, YY) denotes the vector
space of all continuous linear mappings from X into Y. £ (X, X) is denoted by
L£(X), and £ (X, ©), the dual space of X, is denoted by X*.

If A C X and B C X*, then o(A, B) denotes the weakest topology on A
relative to which the restriction to A of each member of B is continuous. A net
{x,} in A 0(A, B)-converges to x € A if and only if x*(x,) — x*(x) for all
x* € B. With the topology o(, B), X is a locally convex topological vector
space. A typical basic convex neighborhood of zero in this topology is the set
{(xeX:|x*(x)| <ei=1,2, ... ,n}, wherex], x¥, ... ,xeBand
€ > 0.0(X, A*)is called the weak topology of X. Dually, o(B, A) is the weakest
topology on B relative to which the mapping x* — x*(x): B = C is continuous
for each x € A. o(X*, ) is called the weak* topology of X*.

If O and Y are Banach spaces, then £ (9, YY) is a Banach space under the
uniform operator norm

[Ull = sup {ux] - <] =1} (Ueg(x,y)).

There are two additional locally convex topologies on £ (X, Y) that are of interest
to us: the strong operator topology, which is the weakest topology of £ (X, Y)
relative to which the mapping U — Ux: £(X, Y) — Y is continuous for
each x € &, and the weak operator topology, which is the weakest topology of
L£(X, Y) relative to which the mapping U — y*(Ux): £L(X, Y) — C is con-
tinuous for each x € X and y* € Y*.

We denote the closure of a set A in a topological space by A~ or A. If A
is a subset of a locally convex topological vector space, then sp 4 and co A denote,

xi



xii Summary of Netation

respectively, the linear span of A and the convex hull of A. The closures of these
sets are denoted by Sp 4 and To A, respectively. The convex circled (or convex
balanced) hull of 4 is denoted by cco 4. If 4 is convex, then ex A denotes the set
of extreme points of A.

For a nonempty set S, & (S) denotes the set of all bounded complex-valued
functions on S. B (§) is a C*-algebra with respect to the usual operations of (point-
wise) addition, multiplication, scalar multiplication, and complex conjugation, and
with respect to the uniform (or supremum) norm given by || f || = sup {| f (s)] :
s € S }. Unless otherwise stipulated, any mention of norm on a subspace of & (S)
will refer to the uniform norm.

For fe ®(S), the functions Re f, Im f, f, and | f | are defined as

(Re f)(s) = Re (£ (5)). (Imf)(s) = 9Im (f(5)).
&) =FG)L | fls)=|f)  (se8).

Also, if fand g are real-valued members of B (S ), then fV g and f A g are defined
by

(fve)s)=f(s)Vvegls) and (fAg)(s)=f(s)Nng(s) (se8§)

where, for real numbers x and y, x V y is the maximum of x and y, and x A y is
the minimum. If ¢ is a complex number, we shall use the same symbol to denote
the function whose constant value is ¢. If A C §, then 1, denotes the indicator
function of A, that is, the function on S whose value is 1 on A and 0 on S \ A. For
subsets 7 of § and F of B(S), the set of functions { f |;: f€ F} is denoted by
Flp. fS =8, X S, and f; € ®(S;), i = 1, 2, we shall write |, ® f, for the
function on S whose value at (s, s,) is f (s;) f (5,).

The space of bounded, continuous, complex-valued functions on a topological
space S is denoted by C(S). Clearly, C(S) is a C*-subalgebra of B (S ), that is,
C(§) is closed under addition, multiplication, scalar multiplication, complex con-
jugation, and uniform limits. If S is locally compact, then C,(S ) denotes the C*-
subalgebra of C(S) consisting of the functions that vanish at infinity. If S is a
convex subset of a locally convex topological vector space, we denote by @F ()
the space of bounded, continuous, complex-valued, affine functions on S. Note
that @F (S) is a norm closed, conjugate closed, linear subspace of C(S).

The dual of a continuous mapping 6 : S — T from a topological space S into a
topological space T is the mapping 6*: C(T) — C(S) defined by 0*( f) :=
fo#8,feC(T). Clearly, 6* € £L(C(T), C(S5)).
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Chapter One

Semigroups

The theory of semigroups arose in an effort to generalize ring theory and group
theory and in particular the theory of groups of transformations of a set. The sub-
ject has grown enormously over the last 50 years and draws on many areas of
mathematics, including algebraic topology, manifolds, and functional analysis. In
this chapter we give a brief introduction to the subject, focusing on those aspects
that will be needed in later sections. The reader who wishes to pursue the subject
in more detail should consult the references mentioned in the Notes section at the
end of the chapter.

The first two sections of the chapter deal only with the algebraic theory of
semigroups. The remaining sections treat semigroups with a topology that is to
some degree compatible with the algebraic structure.

1 ALGEBRAIC THEORY: BASIC CONCEPTS

1.1 Definition.

A semigroup is a pair (S, - ), where S is a nonempty set and ( + ) is an associative
(binary) operation (s, ) = s - 1: S X § = §. Associativity means that

re(s-t)y=(r-s)-t (r,s,t€S8).
A semigroup with only one element is called trivial.

The operation on S will usually be called multiplication, and s - ¢t will be called
the product of s and r. Other notations for s - r are s + ¢ and s © 1, the choice
(usually) depending on the context. We shall generally drop the symbol for mul-
tiplication and denote the product of s and 7 by sz. If s € S and n is a natural number,
we shall write s” for ss . . . s (n factors).

It may be shown [as in Petrich (1973), for example] that every semigroup sat-
isfies the general associative law, which asserts that the value of the product of n
members of the semigroup is independent of the positioning of the parentheses.

1



2 Semigroups

1.2 Notation.

For each member ¢ of a semigroup S, define p,: § = Sand \,: § — S by
o (s) =st, \(s)=1s (s€8).
For subsets A, B of § define

At = p,(A), 1A = N\ (A4),
At =p'(4), 17'4A=N\"(4),
and

AB=U ar= U B ={st:s€A,1eB}.

reB teA

If A, A,,..., A, are subsets of §, define 4,4, - - - A, inductively by 4,4, - A4,
= (AAy -+ A,_)A,. If each A, = A, we write A" for 4|4, - - - A,. Finally,
if S is a group, define

AV = {s":seA}.

1.3 Definition.

Elements s, 7 in a semigroup S are said to commute if st = ts. The center of S is
the set Z(S) of all members of S that commute with every member of S. § is said
to be commutative or abelian if Z(§) = §, that is, if any two elements of § com-
mute.

The standard examples of commutative semigroups are '/, —, ~, =, -, *
©", and ~" under ordinary addition or ordinary multiplication. Moreover,

Z, +), (R, +),(Q, +), (G, +),(R\ {0}, ), (@\ {0}, ), (C\ {0}, -),
and (T, -) are commutative groups, and ([, +) is a commutative semigroup.

An important example of a noncommutative semigroup is the set M(n, ) of
all n X n matrices over © under matrix multiplication (n = 2). For another ex-
ample, let X be a set with cardinality greater than 1. Then the set X* of all func-
tions from X into X is a noncommutative semigroup with composition of functions
as the semigroup operation.

1.4 Definition.

An element e of a semigroup S is called a right (respectively, left) identity for S if
se = s (respectively, es = s) forall s € S. A right identity that is also a left identity
is called an identity. Identities will frequently be denoted by the symbol 1. If S is
a semigroup with identity 1, we define s° = 1 for any s € S.

A semigroup may have many right identities. For example, in the semigroup
consisting of all matrices of the form
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{0 x] 7
0 1 (xe ),

every element is a right identity. However, if a semigroup has a right identity and
a left identity, then the two coincide and the common element is an identity (Ex-
ercise 1.30). In particular, a semigroup can have at most one identity.

If a semigroup S lacks an identity, one may adjoin a new symbol 1 to § and
define 1s = s1 = sforall s e S U {1}; if the original product is retained for pairs
from S, then S U {1} is a semigroup with identity 1.

1.5 Notation.

If a semigroup S does not have an identity, then S' will denote S with an identity
adjoined in the manner described in Definition 1.4. If S already has an identity,
then we set §' = §.

1.6 Definition.

An element z in a semigroup S is a right zero if sz = z for all s € S. If every
member of § is a right zero, then S is called a right zero semigroup. Left zero and
left zero semigroup are defined analogously. A right zero that is also a left zero is
called a zero. Zeros are frequently denoted by the symbol 0. If S has a zero and
st = 0 forall s, r € S, then S is called a null semigroup.

If S has a left zero and a right zero, then the two are equal and the common
element is a zero (Exercise 1.30). Thus, a semigroup has at most one zero.

Note that any nonempty set may be given a multiplication relative to which it
is a right zero semigroup. A similar comment applies for the left zero and null
cases.

1.7 Example.

Under matrix multiplication, the set consisting of the matrices

[ 1 0 0 07} [0 1 0 0]
0100 0100
a = b =
000 1 0 0 1
L0 0 0 1] [0 0 0 1_
[0 0 0 1] [0 0 1 0]
1 00 0100
CcC = d:
000 1 000 1
L0 0 0 1] L0 0 0 1]




4 Semigroups

is a semigroup with a left zero that is not a right zero and a left identity that is not
a right identity. This is easily seen from the following ‘‘multiplication table’’ for
S:

[

QU n -
a0 S (R
e N - o (&
o6 T o
LTRSS IS N

1.8 Definition.

An element e of a semigroup S is said to be an idempotent if ¢> = e. The set of
all idempotents of § is denoted by E(S). If E(S) = S, then § is called an idem-
potent semigroup or a band. A commutative idempotent semigroup is called a
semilattice.

Left zero and right zero semigroups are simple examples of bands. If S, and S,
are arbitrary nonempty sets, then the Cartesian product §, X S, with multiplication

(51, )1, 1) = (51, 1)

is an idempotent semigroup that, except in trivial cases, is neither a left zero nor
a right zero semigroup. Note that if S, is given left zero multiplication and S, is
given right zero multiplication, then the product of two members of §; X §, may
be viewed as the result of multiplying coordinatewise (see Definition 1.26).

A simple example of a semilattice is the set {0, 1}, where 0 is a zero and 1 an
identity. Another example is any totally ordered set with multiplication xy =

min{x, y}.

1.9 Definition.

Let S be a semigroup and let 7 be a nonempty subset of S. 7 is said to be

(@) a subsemigroup of Sif T* C T, that is, if T is a semigroup with respect to
multiplication in S;

(b) a subgroup of S if T is a group relative to multiplication in S;

(¢) aleft ideal of S if ST C T,

(d) a right ideal of S if TS C T; and

(e) a (two-sided) ideal of S if T is both a left ideal and a nght ideal.

If, in any of these definitions, 7 # §, then T is said to be proper.

In the matrix semigroup of Example 1.7, {a, b, ¢} is a left ideal that is not a
right ideal, {b} is a right ideal that is not a left ideal, {a, b} is a subsemigroup
that is neither a left ideal nor a right ideal, and {b, c} is a proper ideal.
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It is easy to verify that the intersection of a family of subsemigroups of a
semigroup S is again a subsemigroup of S, provided the intersection is nonempty.
The corresponding statements for left ideals, right ideals, and ideals also hold. An
important special case is given in the next definition.

1.10 Definition.

Let A be a nonempty subset of a semigroup S. The intersection of all subsemi-
groups (respectively, left ideals, right ideals, ideals) of S that contain A4 is called
the subsemigroup (respectively, left ideal, right ideal, ideal) generated by A, and
the elements of A4 are called generators. The subsemigroup generated by 4 will be
denoted by (A). If § = (A), we say that S is generated by A. A semigroup
generated by a single element is said to be cyclic.

The subsemigroup generated by A may be concretely realized as the set of all
products s;s, - * + 5,, wheren € 'l and s; € A, 1 < i < n. Itis clearly the smallest
subsemigroup of § containing the set A. Similarly, the left ideal (respectively,
ideal) generated by 4 may be written A U S4 = S'A (respectively, 4 U S4 U
AS U SAS = §'4S").

If e is an idempotent in a semigroup S, then there is at least one subgroup of S
containing e, namely {e}. The next result asserts that there is a largest such
subgroup. First we give the following definition.

1.11 Definition.

Let e be an idempotent in a semigroup S. The union of all subgroups of S con-
taining e is called the maximal subgroup of S containing e and is denoted by H(e).
If § has an identity 1, then H(1) is called the group of units of S.

The following proposition justifies the use of the terminology of Definition 1.11.

1.12 Proposition.

Let S be a semigroup and let e € E(S). Then H(e) is a subgroup of S with identity
e.

Proof. Let T denote the subsemigroup of § generated by H(e). Since se = es

= s forall s € H(e), e is an identity for 7. Let s € T. Then s = 515, = * - 5,
where n € il and s; € H(e), i = 1,2, ..., n. For each i choose t; € H(e) such
that s;t; = t;s;, = e,and sett := 1, * - - 1,1,. Then st = ts = e, which shows that

T is a group. Therefore, H(e) = T. [J

It is easily verified that in general H(e) = {1 € eSe: e € St N 1S }. Our main
interest is in the case when H(e) = eSe. Necessary and sufficient conditions for
this to occur are given in the next section (Theorem 2.8).
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1.13 Definition.

A semigroup S is called left (respectively, right) simple if it has no proper left
(respectively, right) ideals. S is simple if it has no proper two-sided ideals.

A left zero semigroup with more than one element is left simple but not right
simple. Groups are left simple, right simple, and simple. (For a converse, see
Theorem 1.17.) Obviously, a semigroup that is left or right simple is simple. The
following is an example of a semigroup that is simple but not a group.

1.14 Example.

Let S be the set of all matrices

x 0
] reeon

y o1

Under matrix multiplication, S is simple but neither left nor right simple. For
instance, the subset of S defined by the condition y > 1 is a proper left ideal, and
the subset defined by the condition y > 2x is a proper right ideal.

The next proposition provides some easy tests for determining when a given
semigroup is left simple, right simple, or simple.

1.15 Proposition.

A semigroup S is left (respectively, right) simple if and only if St = S (respectively,
tS = S) forallt€S. S is simple if and only if $tS = S for all t € S.

Proof. We prove only the left simple version. Since St is a left ideal, the ne-
cessity is clear. The sufficiency follows from the observation that if L is a left ideal
andrelL, thenSt C L. [

Remark. 1t is clear that the right simple version of 1.15 may be proved by
making obvious modifications to the proof just given. This is an example of a
situation that occurs frequently in semigroup theory: a ‘‘left’’ statement has a dual
“‘right’” statement, and the proof of one statement is the mirror image of that of
the other. Hereafter, we shall record only one of the left/right statements and refer
to the other as its ‘‘dual.’’ (Beginning in Section 3 we shall encounter instances
where this left/right duality fails, but these occur in a topological context and are
easily distinguishable from the situations currently under discussion.)

1.16 Definition.

A semigroup S is right (respectively, left) cancellative if r, s, t € S and sr = tr
(respectively, rs = rr) imply s = r. A semigroup that is both left and right can-
cellative is said to be cancellative.



